数据集关键信息简介
数据集核心信息表


| 信息类别 | 具体内容 |
|---|---|
| 数据集类别 | 含原始数据集与增强数据集两类,原始数据集涵盖 6 种建筑缺陷(藻类、主要裂缝、小裂缝、剥落、剥落、污渍)及正常墙面图像,增强数据集为原始图像经处理生成 |
| 数据数量 | 原始数据集含 3965 张标注 RGB 图像,增强数据集含 14000 张经几何变换与颜色调整的图像 |
| 格式种类 | 图像为 RGB 格式,配套有 Python 脚本文件(.py)、README.md 文件、requirements.txt 文件等 |
| 最重要应用价值 | 为自动化建筑检查领域提供全面公开数据集,支撑计算机视觉技术评估与开发,助力提升建筑缺陷识别准确性与效率,推动城市基础设施安全维护 |

数据集的类别划分清晰,围绕建筑缺陷检测需求设置。原始数据集聚焦真实场景,精准覆盖 6 种常见建筑缺陷及正常墙面状态,每种缺陷都有对应的图像样本,能真实反映不同建筑结构的缺陷情况;增强数据集则基于原始数据优化,通过技术手段拓展数据多样性,满足模型训练对丰富数据的需求。


从数量来看,数据集规模可观。原始数据集的 3965 张 RGB 图像,每张都经过人工标注,确保数据的准确性与可用性,为基础模型训练提供扎实数据支撑;14000 张增强图像进一步扩大数据量,弥补原始数据可能存在的不足,让训练出的模型更具稳健性与泛化能力。

数据集格式贴合实际应用场景,RGB 图像格式便于计算机视觉技术处理,适配各类图像识别模型;配套的 Python 脚本涵盖数据预处理、增强、拆分、模型训练评估等功能.
245

被折叠的 条评论
为什么被折叠?



