斯坦福和伯克利都在用的线性代数教材,现在可以免费下载了

白交 发自 凹非寺 
量子位 报道 | 公众号 QbitAI

豆瓣评分9.3分,线性代数网红书,现在可以免费下载了。

被美国公认为刷新线代学习的书籍,《Linear Algebra Done Right》第三版,近日已经可以在Springerlink免费下载了!

自第一版出版以来,迅速风靡世界,在30多个国家为200多所高校所采用,其中包括斯坦福大学和加州大学伯克利分校等著名学府。

前段时间,原作者在twitter上发布了这一消息,迅速迎来网友的关注。

直至7月底,这本书均可在网站上下载。(下载链接已附文末)

网友纷纷表示:“感谢!喜大普奔!”       

不过话说回来,这本书真的的对线代的初学者来说很友好。除了要求对数学有适当的了解,没有任何要求,既不考究计算能力,重在理解,文字浅显易懂,行文十分有趣。

想要开拓一下数学思维的同学,赶紧下载来看看~

本书内容速览

这本书的重点在于理解有限维向量空间上的线性算子的结构。全书共分为10个章节:

第1章 向量空间

第2章 有限维向量空间

第3章 线性映射

第4章 多项式

第5章 特征值、特征向量、不变量子空间

第6章 内积空间

第7章 内积空间上的算子

第8章 复向量空间上的算子

第9章 实向量空间上的算子

第10章 迹与行列式

讨论了向量空间、线性独立、跨度、基础和维度。然后,还有线性映射、特征值和特征向量。介绍了内向量空间,引出了有限维谱定理及其后果,用广义向量来揭示线性算子的结构。

跟上一个版本相比,习题更加丰富。

增加了大概300多道习题,几乎是上一个版本的3倍。

新增的题目主要是在积空间、商空间以及对偶空间这三个方面上。

此外在行文的排版上,也更加精美,阅读体验更佳。

深受中国学生欢迎

从豆瓣评分达到9.3的高分,我们就可以看到国内的同学也是对这本书有很高的赞誉。

这本书不同于传统线代书籍一开始从矩阵、行列式入手,而是直接介绍线性空间和映射,甚至讲行列式放在了最后。

我们习惯了学习数学如何应用,但是却对其中的数学原理了解不深。

知其然,却不知其所以然。

但这本书看起来就不像是我们日常学习的数学书籍,里面内容侧重于理解,而非计算和应用。

就像有网友提到:

这本书教会你的将是那些更重要的数学思想,不拘泥于工具,而是形而上者的道。强烈推荐给那些喜爱数学之美的人们。

还有网友称,这本书是优美的,纯粹的数学思维,完全不去考虑应用。

One more thing

在众多的评论中,还有一则“带货”:

话说另外一本Done wrong也很好。

这里的“Done wrong”指的是?

《Linear Algebra Done Wrong》

也是一本线性代数的教材,而且还有一段学术圈争锋往事。

1995年,Sheldon Axler出版了《Linear Algebra Done Right》(第一版)。

因为这本书讲法十分现代,抛弃了以行列式为主的传统讲法,直接紧扣线性代数中最核心的算子理论,在当时学术界引起了不小波动。

于是乎,也有不服的,并且“我行我上”——最终布朗大学教授Sergei Treil,针锋相对写了这本《Linear Algebra Done Wrong》,并且免费提供下载。

而Treil写的就是以行列式知识为主的传统风格的线代教材。

所以这两本教材常年被拿来比较。

至于喜欢哪本,欢迎你亲测横评一番,告诉我们你的观感。

一个小秘密,这个世界爱数学的人,还挺多的。

下载链接:

https://link.springer.com/book/10.1007/978-3-319-11080-6

作者系网易新闻·网易号“各有态度”签约作者

如何关注、学习、用好人工智能? 

每个工作日,量子位AI内参精选全球科技和研究最新动态,汇总新技术、新产品和新应用,梳理当日最热行业趋势和政策,搜索有价值的论文、教程、研究等。

同时,AI内参群为大家提供了交流和分享的平台,更好地满足大家获取AI资讯、学习AI技术的需求。扫码即可订阅:

了解AI发展现状,抓住行业发展机遇

AI社群 | 与优秀的人交流

量子位 QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态

喜欢就点「在看」吧 ! 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值