小扎亲自官宣Meta视觉大模型!自监督学习无需微调,多任务效果超OpenCLIP丨开源...

萧箫 发自 凹非寺
量子位 | 公众号 QbitAI

无需文字标签,完全自监督的Meta视觉大模型来了!

小扎亲自官宣,发布即收获大量关注度——

在语义分割、实例分割、深度估计和图像检索等任务中,这个名叫DINOv2的视觉大模型均取得了非常不错的效果。

f6ce0f5b82eeeb2fa26f0b258233ba30.png

甚至有超过当前最好的开源视觉模型OpenCLIP之势。

虽然此前Meta就发布过自监督学习视觉大模型DINO,不过这次AI识别图像特征的能力显然更进一步,准确分割出了视频中的主体:

da4de68d7135894f5a7e93dadf2928fc.gif

可别以为DINOv2通过自监督学会的只有图片分割。事实上,它已经能根据不同类别、不同场景下的照片,准确识别出同种物体(狗)的头部、身体和四肢长在哪:

e4c33def2c2133e04252ef7289d46cef.png

换而言之,DINOv2自己学会了找图像特征。

目前Meta官方不仅已经放出了开源代码,而且还给了网页版Demo试玩。有网友内涵:

什么叫开源,LLaMA,SAM,DINOv2这才叫开源!

fff3cf578c84b13bcbb31fbeec3a1851.png

一起来看看,DINOv2的效果究竟如何。

准确识别不同画风的同种物体

事实上,DINOv2是基于上一代DINOv1打造的视觉大模型。

这个模型参数量是10亿级,也仍然是视觉Transformer架构(ViT),但与DINO不太一样的是,这次DINOv2在数据集上经过了精心挑选。

具体来说,DINOv2构建了一个数据筛选pipeline,将内容相似的图片精心筛选出来,同时排除掉相同的图片:

c6f1c732759be2f8a8752adb0d9a4dd0.png

最终呈现给DINOv2的训练数据图片虽然没有文字标签,但这些图片的特征确实是相似的。

采用这类数据训练出来的视觉模型,效果如何?

这是DINOv2在8个视觉任务上的表现,包括语义分割、分类、深度估计等,其中橙色是自监督方法的效果,深粉色是弱监督方法的效果。

可以看见,经过自监督学习的视觉模型,表现上已经与经过弱监督学习的模型性能相当。

e8adfc1e1a338b36fea60fff2d27cce6.png

实际效果也不错,即便在一系列照片中,相同物体的画风并不相似,DINOv2也能准确识别它们的特征,并分到相似的列表中。

如(a)组中都具有翅膀的鸟和飞机、(b)组中的大象和大象雕塑、(c)组中的汽车和汽车玩具模型、(d)组中的马和涂鸦版马:

a3e71eeed02333e0fee67d5cbbb6754f.png

而且从PCA(主成分分析)图像效果来看,DINOv2不仅能准确分类,还能用不同颜色标出它们“相同”的部分,例如象鼻都是绿色、车轮都是红色、马的尾巴是黄色等。

换而言之,DINOv2能理解这些图像中的相似之处,就像人会形容飞机“看起来像一只鸟”一样。

目前DINOv2已经放出Demo,我们也试了试它的实际效果。

Demo直接可玩

官网已经开放语义分割、图像检索和深度估计三大功能的试玩。

据Meta介绍,这几个任务中,DINOv2在大多数基准上超过了目前开源视觉模型中表现最好的OpenCLIP。

我们先来看看深度估计的效果。

df44464515b32f292f717e7d51e0e546.png

值得一提的是,在效果更好的情况下,DINOv2运行的速度也比iBOT更快,相同硬件下只需三分之一的内存,运行速度就能比DINOv2快上2倍多。

9771f3ddc1d02fc385b2f948d9e05279.png

这是Meta论文中与OpenCLIP在实际例子上的比较效果:

bfc7066a3182eef3b2c8347a150e2e77.png

我们用这张猛男版新宝岛试一下,看起来还不错,即使是高糊图片也能比较好地估计出深度:

64000f53e525af56b17d46b0ac5138ab.png

接下来是语义分割的效果,这里也先给出Meta论文中的数据对比情况:

5d4b95d6ce8ba21bb431797167ab1295.png

这里也给出OpenCLIP和DINOv2的对比,中间的图片是OpenCLIP的效果,右边是DINOv2分割的效果:

6c97b9fe4bfaa2aee3101769e2ce2e5a.png

我们也用一张办公室的图片试了一下,看起来DINOv2还是能比较准确地分割人体、物体的,但在细节上会有一些噪点:

66ad994533add9039124c9fed3d2417e.png

最后是图片检索

官网上给出的图片效果还是挺不错的,输入铁塔照片,可以生成不少含铁塔的相似艺术图片:

eed50e6f2885e6fbd2c0c32984e1223c.png

这里我们也试了试,输入一张华强买瓜,给出来的艺术图片大多数与西瓜有关:

fad8036c00812be4a4b0dc18d48d9dec.png

那么,这样的自监督视觉大模型可以用在哪里?

从Meta给出的视频来看,目前有一些比较环保的用途,例如用于估计全球各地的树木高度:

6d282e6d94356804985a9715db6d772d.png

除此之外,如同扎克伯格所说,DINOv2还能被用于改善医学成像、粮食作物生长等。当然这里小扎还进一步强调:

可以被用于制作更具沉浸感的元宇宙。

嗯,看来Meta的元宇宙路线还将继续……

试玩Demo地址:
https://dinov2.metademolab.com/demos

项目地址:
https://github.com/facebookresearch/dinov2

参考链接:
https://www.facebook.com/zuck/posts/pfbid02f3chCYQphfYnzRaDXeJxsT5EmyhbrFsjqLaU31KuTG63Ca4yMXFcDXQcukYPbWUMl

《中国AIGC算力产业全景报告》征集启动

AIGC算力需求爆发,谁将在此次算力产业变革中脱颖而出?

量子位《中国AIGC算力产业全景报告》《最值得关注的AIGC算力玩家》正式启动对外征集,期待有更多优秀的机构产品、案例与技术能够被大众看到。

87f351edc4d04a175243841741fa4009.png

点这里👇关注我,记得标星哦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值