一张图or文字生成无限3D世界!斯坦福吴佳俊团队新作,让网友直呼“难以置信”...

西风 发自 凹非寺
量子位 | 公众号 QbitAI

斯坦福吴佳俊团队打造AI版“爱丽丝梦游仙境”巨作!

仅用一张图or一段文字就能沿相机轨迹生成无限连贯3D场景

72471a97c7023fe95ae4b38008c37940.gif

只需输入一段古诗词,诗中场景立刻映入眼帘:

4d44c07065fe1636d25f4fa3c52b3ed4.gif

而且还是来回式的,可以再倒回去的那种:

0895394c67fff0655adf4665f6ed9e09.gif

同一起点可以进入不同场景:

7becb79004b426bfb0777037b97975e1.gif

真实场景也可以,其中的人物阴影等细节都毫无违和感:

74dcf3d5266717d8062b8d0a2f3ed13a.gif

方块世界更不在话下,仿佛打开了“我的世界”:

eb488783bf3e15b1335ff0a5690b8cf4.gif

这项工作名为WonderJourney,由斯坦福吴佳俊团队和谷歌研究院联合打造。

49ec0e004fb81ba19ceee12b2247094f.png

除了可以从任意位置开始,无限生成多样化且连贯的3D场景,WonderJourney根据文本描述生成时,可控性也很高。

只要将鼠标悬停在视频上,就可以暂停自动滑动。

这项工作的发布让网友们直呼“难以置信”🔥。项目代码还没正式发布,就收获了200+星:

539765364d8ea4a2dd34fd9485b0f515.png

AI研究员Xander Steenbrugge惊讶之余表示:

这是生成式AI和传统3D技术的完美结合。

304d0426e37c3b2afe283b9e13da44fb.png

要知道,之前的工作都是专注于单一类型场景,WonderJourney可谓打开了新世界的大门。

那这究竟是如何做到的?

开启3D奇妙之旅

生成无限连贯3D场景要解决的一大难题是:如何在保持元素多样性的同时,生成符合逻辑的场景元素组合。

这当中需要判断将要生成的元素空间位置的合理性,还需要处理好新旧场景的遮挡关系、视差等几何关系。

可以看到WonderJourney在这方面的处理上非常细致:

d3709fed3ff9d500fbb3def36dd54e27.gif

无论什么风格都能轻松驾驭:

3c7b6b5ac42a3efacfa74c0e5b0a20bb.gif

能够做到这些,关键在于WonderJourney的模块化流程。

总的生成过程分为“确定要生成什么对象”、“把这些对象放在哪里”、“这些场景如何在几何上连接”三步。

需要以下三个模块配合完成:

  • Scene description generation:使用大语言模型(LLM)根据当前场景生成下一个场景的文本描述。

  • Visual scene generation:将文本描述转换为3D点云表示的场景。

  • Visual validation:使用VLM验证生成的场景,检测到不合理的结果启动重新生成。

be1f590d898e221e805f89599d36b504.png

具体来说,在Scene description generation模块,使用预训练好的LLM输入当前场景描述,通过自回归生成下一个场景,其中包含风格、物体、背景三部分的描述。

此外,还要将自然语言描述进行词类过滤,只保留名词和形容词;每生成一个新场景描述,会更新场景描述记忆。

在Visual scene generation模块,先是将当前图像/文本转换为3D点云表示。

58f1111f629218a741768e0183460d21.png

然后使用depth refinement增强对象边界的depth不连续性,通俗来讲就是让边界两侧的深度对比更加明显,从而使过渡更加逼真。

之后使用text-guided inpainting基于文本描述生成新场景图像。

研究人员还设计了depth consistency loss和re-rendering consistency机制改进新旧场景遮挡和点云对齐。

最后Visual validation模块,使用VLM提示检测生成图像中的不好的结果,比如画框、模糊等,如果检测到则重新生成场景。

值得一提的是,这三个模块都可用最先进的预训练模型实现、替换,所以不需要任何训练。

实验测试

由于连贯3D场景生成是一个没有现有可用数据集的新任务,所以研究人员在实验中使用了自己拍摄的照片、来自在线无版权的照片以及生成的图片进行了评估。

此外,使用了两种最先进的连续视图生成方法作为基准:基于图像的InfiniteNature-Zero和基于文本的SceneScape。

定性结果展示了从不同类型输入生成的连贯3D场景序列效果,表明方法可以从任何输入开始生成:

534ebf57b819e6402fbfad2ffd5d33d1.png

此外,同一输入可生成不同输出,表明方法具有多样性:

4b19cc811d4a83c676046417c2ee35c2.png

研究人员还从生成效果多样性、视觉质量、场景复杂度和有趣度这4个方面进行了人类偏好评估。

f458c2984d1df33abe08fbade577668c.png

结果WonderJourney方法明显优于InfiniteNature-Zero、SceneScape。

ba7d6066c3021b5a2dc8f8ff492c772f.png

作者简介

该篇论文来自斯坦福大学吴佳俊团队和谷歌研究院。

论文一作俞洪兴,斯坦福大学四年级博士生,导师吴佳俊。

55de12b0f560e4c9495c85f66b929a86.png

主要研究领域为物理场景理解和动态建模。

俞洪兴曾在谷歌研究院实习,论文部分工作是在实习期间完成。

吴佳俊,现任斯坦福大学助理教授,隶属于斯坦福视觉与学习实验室 (SVL)和斯坦福人工智能实验室 (SAIL)。

在麻省理工学院完成博士学位,本科毕业于清华大学姚班,曾被誉为“清华十大学神之一”。

a72d9a9603b29056b56e1ec2f78db880.png

论文链接:https://arxiv.org/abs/2312.03884

参考链接:
[1]https://twitter.com/koven_yu/status/1733192368508322080
[2]kovenyu.com/wonderjourney/

—  —

点这里👇关注我,记得标星哦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值