666条数据教会AI写万字长文!模型数据集都开源

魔搭ModelScope团队 投稿
量子位 | 公众号 QbitAI

仅需600多条数据,就能训练自己的长输出模型了?!

事情是酱婶儿的——

虽然大模型的上下文(Context)支持越来越长,但包括GPT-4o,Llama-3.1-70B,Claude 3.5 Sonnet在内的这些业界领先模型,在用户指定所需输出长度的情况下,其最大输出长度仍无法满足要求。

例如,针对“写一篇关于罗马帝国历史的10000字文章”的要求,所有这些通用模型在输出长度上均无法超过2000字。

对此,基于GLM4-9B,智谱通过构建长输出的训练数据得到了LongWriter-GLM4-9B模型,能够应对超长输出(10000+ words)场景。

与此同时,智谱开源了训练该模型所需的长输出文本数据集LongWriter-6K。

现在,魔搭社区上基于LongWriter-6K过滤精选了666条数据(LongWriter-6K-Filtered),也一并开源了。

有啥用??

一句话,使用该数据集,你就能在自己的模型中集成长输出能力了。

53230747529f5a3c29e0126064607fdc.jpeg

LongWriter数据生成与模型训练

通过分析训练SFT数据,团队发现对于“模型无法输出较长文本”的一个合理解释为:

模型所能生成的最大长度,会受限于其SFT数据中存在的输出长度上限。

以GLM4-9B-Chat模型为例,其SFT训练使用的180K条chat数据中,输出长度超过500、1,000和2,000字的数据,分别仅占SFT数据量大的28%、2%和0.1%。

可见,长输出长度的训练数据占比较小,而2000字长度以上的数据样本占比更是微乎其微。

有了这个分析,LongWriter-GLM-9B是智谱基于GLM4-9B模型,通过构建长输出的训练数据而得到的模型,在输出长文方面表现突出。

在LongWriter工作的基础上,团队利用社区的Swift微调训练工具和EvalScope评估框架,进一步探索了在扩展模型输出长度这个任务上,高质量数据对于模型质量的重要性。

同时,将这个模型训练的receipt,扩展到其他模型(例如Qwen2)上。

在这个过程中,团队还分享了一些有趣的发现和实践经验:

a)少即是多:数据质量比数据数量更关键。

通过对数据的分析过滤,团队发现LongWriter-6K的6000条数据,依然存在优化空间。

他们从中选出了10%左右(666条)的高质量数据并基于这些数据做微调训练。

在Qwen2-7b-instruct和GLM4-9B-Chat两个模型上,只需要3.7%训练计算消耗,就能获取和原论文中,LongWriter-GLM-9B类似的性能提升。

此外,随着基础模型的升级,支持长输出这个能力,在新迭代中本身也会有所增强。但LongWriter的技术方案,还是有其适用性。例如在新鲜出炉的Qwen2.5模型上,团队通过第一时间的测试和验证发现,一方面Qwen2.5模型本身在文本生成长度上,已经有了长足进步,但同样的训练微调方案,还是能进一步带来很好的任务能力提升。

b)对于提升输出文本长度这个具体任务,从base模型开始SFT似乎不是必须的。

以对齐版本(chat/instruct)模型为起点,在模型输出质量和输出长度两方面,也都能获取较好的效果。

下面来看团队对数据的处理。

LongWriter-6K数据

LongWriter-6K数据是通过AgentWriter生成,也就是将长文写作任务分解为多个子任务,每个子任务负责撰写一段。

实验发现,在GPT-4o上使用AgentWriter策略,能够得到近乎线性的Output Length,且长度远超2000词,甚至可以达到30000词的量级。

07e5d9977353d99d64e22437a9318636.png

LongWriter-6K数据集由6000条”Required Length”超过2000字的用户指令构成,来自于GLM-4的SFT数据,其中大部分为中文。

另外,从WildChat中选择了3000条指令,主要为英文。

在这个基础上,使用GPT-4o过滤掉有毒数据并人工检查了自动选择的指令。

最后,利用AgentWrite生成与这些instruction对应的response。

ef42ff05da526bab0e3a6a533e4ee142.png

LongWriter训练数据输出长度分布
LongWriter模型训练与评估

LongWriter-GLM4-9B模型训练使用GLM4-9B作为基模,将LongWriter-6k与180k的GLM-4通用chat SFT数据结合,形成整个训练集。

LongWriter-6k有效补充了输出长度超过2k字的通用chat SFT 数据的稀缺性,且LongWriter-6k的输出长度在2k-10k之间的分布相对均匀。

评价指标

针对输出长文本任务,LongWriter模型采用两个指标:

  • 输出长度(SL)评分

  • 输出质量(SQ)评分

为了让模型的输出长度尽可能接近指令中规定的要求,使用了分段线性函数来计算输出长度得分(SL):

174b7564abd36618405da06cc11e943e.png

输出质量SQ则使用GPT-4o,从以下6个维度来评价

  • Relevance,相关性

  • Accuracy,准确性

  • Coherence,连贯性

  • Clarity,清晰度

  • Breadth and Depth,广度和深度

  • Reading Experience,阅读体验

每个维度分值为1到5中的整数,最低分1,最高分5;最后6个维度整体求平均,并缩放到100分。

训练4个epoch,大约需要 2,500-3,000 step。

实验结果

a57d83a7af215e8ebf4e15c87a1b0f43.png
181399e22c2abb336bd2f176f5c931e2.png

LongWriter实验结果

可以看到,LongWriter-9B相较于GLM4-9B-Chat,Overall绝对提升12.2个百分点(68.3->80.5),同时再叠加DPO训练,可以有进一步3.5个点的提升。

从LongWriter-6k到LongWrier-6k-filtered:数据质量提升

通过观察LongWriter-6k数据集,团队发现针对任务的评估标准,这个数据集中仍然有较多的数据并不完全符合目标任务的要求。

例如,大量样本中,对输出长度没有明确要求(“Required Length”):

{"messages": [
  {"role": "user", "content": "请写一篇关于山东大学外国语学院创收情况的调研报告,创收主要渠道有组织四六级笔试阅卷及口语考试阅卷"}, 
  {"role": "assistant", "content": "### 山东大学外国语学院... "}]
}

实际输出长度(Response Length),与prompt要求的长度(Required Length)差距较大,例如:

{"messages": [{"role": "user", "content": "你是一位优秀的辩手,请针对以下辩题,给出观点立论:\n辩题:当代大学生是否应该住校\n立论角度:阐述不住校的好处\n立论要点:运用数据、事例等论证住校的必要性;从锻炼独立能力、培养社交技巧等方面论证观点\n内容要求:表达清晰,论点突出,精辟见解,让人信服 20000字"}, {"role": "assistant", "content": "### 引言:住校与否的辩论\n\n大学生活是每个青少年成长过程中的关键阶段,而当代大学生是否应该住校则成为一个备受争议的话题, ..."}], "length": 20000, "response_length": 7739}

——其Required Length为20000,但输出为7739

此外还有不少数据,由于输入内容被模型直接拒答,导致输出长度极短,对于整体数据质量有较大的污染。

鉴于这些数据对于目标任务可能造成的反作用,团队在LongWriter-6k数据基础上,实施了两个数据清洗剔除策略。

策略1

  • 剔除prompt中对输出长度没有明确要求(Required Length)的数据

  • 数据总量:6000条 → 1748条

策略2

  • 剔除输出长度和prompt中的Required Length差距较大的数据,即eval_length score—SL得分小于80分的数据

  • 数据总量:1748条 → 666条

cdc723df67f2441de7c13e1c2dd52c7a.png策略1过滤后 vs 策略2过滤后的数据特性

可以看到,在经过两轮策略过滤后的数据,其实际Output Length体现了对于Required Length非常好的遵循能力,整体数据样本长度关联接近线性。

这样经过对LongWriter-6k数据极限“压榨”,最终得到了包含666条经过清洗后的LongWrier-6k-filtered数据集,并开源在ModelScope。

基于这个新的LongWrier-6k-filtered数据集,下面开始探索:

这些“少而精”的数据,是否能训练出效果相当甚至更为出色LongWriter模型。

基于不同数据集和模型的LongWriter微调

为了验证“通过基础长输出文本数据,以及精选的输出长度遵循数据,来调教基础模型的长文写作能力”这一方案的通用性,团队选择了Qwen2和GLM4模型来验证上述假设。

同时团队认为,对于长文本写作这一任务,人类对齐过的chat或instruct模型已经提供了一个较好的基准,故可能不需要完全base模型并带上全量的chat SFT数据开始训练。

所以团队分别选用了Qwen2-7b-instruct和GLM4-9B-Chat模型作为训练的基准模型。

当然还有一个原因是,团队确实也没有Qwen2或GLM4的完整SFT数据(doge)。

在不同的实验里,团队选用的数据集,除了LongWrier-6k和LongWrier-6k-filtered之外,还包括了:

Qwen2-72B-Instruct生成并经过筛选的200k中文以及英文对话数据集Magpie-Qwen2-Pro-200K-Chinese和Magpie-Qwen2-Pro-200K-English。

在loss函数的选择方面,使用了“long-ce”loss函数,这与原始LongWriter文章中采用的策略相同:

为避免长输出数据中每个target token对损失的贡献低于短输出的问题,long-ce loss通过计算该批次中所有target token的average loss来获得。

基于ModelScope Swift项目提供的多数据集混合能力,数据混合的训练微调都可以通过一个命令行完成。

例如,如下命令完成的是将longwriter-6k-filtered、Qwen2-Pro-200K-Chinese和Qwen2-Pro-200K-English三个数据集抽样后按自定义混合(包括随机抽样)策略,使用long-ce loss来进行SFT:

swift sft \
    --model_type qwen2-7b-instruct \
    --dataset longwriter-6k-filtered qwen2-pro-zh#6660 qwen2-pro-en#6660 \
    --max_length 28672 \
    --num_train_epochs 2 \
    --eval_steps 200 \
    --batch_size 1 \
    --gradient_accumulation_steps 64 \
    --gradient_checkpointing true \
    --warmup_ratio 0.1 \
    --learning_rate 1e-5 \
    --sft_type full \
    --loss_name long-ce \
    --check_dataset_strategy warning \
    --save_only_model false \
    --save_total_limit -1 \
    --lazy_tokenize true \
    --dataloader_num_workers 1 \
    --resume_only_model true \
    --neftune_noise_alpha 5 \
    --use_flash_attn true

同时遵照LongWriter paper定义的输出长度(SL)和 输出质量(SQ)评分,可以基于EvalScope框架来进行相关评测。

在评测过程中,对于模型推理的配置为repetition_penalty=1.1, temperature=0.5。

LongWriter评测:

# pip install evalscope[framework]


# 配置任务
# `infer`--推理阶段;`eval_l`--length分数评估;`eval_q`:quality分数评估
task_cfg = dict(stage=['infer', 'eval_l', 'eval_q'],
                model='ZhipuAI/LongWriter-glm4-9b',
                input_data_path=None,
                output_dir='./outputs',
                openai_api_key=None,
                openai_gpt_model='gpt-4o-2024-05-13',
                infer_generation_kwargs={
                    'max_new_tokens': 32768,
                    'temperature': 0.5
                },
                eval_generation_kwargs={
                    'max_new_tokens': 1024,
                    'temperature': 0.5,
                    'stop': None
                },
                proc_num=8)


# 提交评测
from evalscope.third_party.longbench_write import run_task
run_task(task_cfg=task_cfg)

训练配置

  • 硬件环境:NVIDIA A100 x 4

  • 初始学习率:1e-5

  • batch size:1,开启梯度累加

模型效果评估

基于Qwen2-7b-instruct

团队首先使用Qwen2-7b-instruct作为基础模型,来微调生成LongWriter模型。实验设计如下:

ee6894ed2aa0b970cdc60d9669636432.png

通过上述实验可以看出,针对遵循指令进行长文本写作这个任务,使用“少而精”的数据,对于模型最终的性能至关重要。

事实上,在实验3中,只通过LongWriter-6k-filtered数据集4个epoch训练,总共2.6K条数据,其训练出来的模型,无论在写作长度,还是写作质量上,都显著优于LongWriter-6k + 180k的通用数据混合训练的模型。

同时,在实验3使用的LongWriter-6k-filtered数据集基础上,实验4再添加1:20混合的通用数据集,总共13.6K数据训练2个epoch,能进一步获得更好的结果。

Qwen2-7b-instruct的这个结果,也验证了使用LongWriter-6k-filtered数据集来微调长文本写作能力,具有一定的通用性,不只局限于GLM4系列模型。

此外,如同LongWriter论文里展示的一样,在写作质量方面,增强了长文本能力的模型,在质量上有小幅度的波动(-1.47点)。

在这些实验里,最终选择了实验4产出的模型作为MS-LongWriter-Qwen2-7b-instruct,并开源到ModelScope。

32f548ae05ef72f9226a610b4bb2b165.png

图6展示了训练定制前后的模型,在输出文本遵循指定长度方面的对比。

可以看到,训练后的模型的文本输出长度,能更好的贴合prompt的要求,特别是在要求输出的文本长度较长的时候。

基于GLM4-9b-Chat

接下来,团队把LongWriter-6k-filtered数据集,以及对应微调定制模型的方法(也就是上述实验4的配置),也以GLM4-9b-Chat模型作为基座进行了定制训练,并且与LongWriter-GLM4-9B结果做了对比。

如下表所示:

a224cb3e814b658861a87519ff60c422.png

可以看到基于实验4的配置,使用GLM4-9b-Chat作为基础,总共使用了13.6K数据,训练2 epoch;而原始LongWriter-GLM4-9B使用186K数据,训练4 epoch

实验4训练用的总数据量在仅为原始LongWriter-GLM4-9B训练使用数据量7.5%(实际消耗计算资源为3.7%)的情况下,获取了类似的效果。

当然这里一个显著的区分点,是团队是以GLM4-9b-Chat作为训练的基础。

考虑到原始论文中使用的是GLM4-9b base模型作为基座,客观上确实需要更多通用对齐数据集。

但如同之前讨论的,对于遵循指令进行长文本写作这个具体任务,从base模型开始训练可能并不必要。

在这些实验里,最终选择了实验4产出的模型作为MS-LongWriter-GLM4-9B-Chat,并开源到ModelScope。

基于Qwen2.5-7b-instruct

在团队的这个探索接近尾声之时,Qwen模型家族正式推出Qwen2.5系列

相比Qwen2系列,Qwen2.5支持的输出长度有了较大的提升。团队也在第一时间基于Qwen2.5-7B-Instruct模型做了初步的实验,结果如下:

fa2ad0628e25b1301754a1afe73f020c.png

对比上述表格,可以清晰看到,未经定制的Qwen2.5-7B-Instruct模型在遵循指令进行长文本写作的输出长度(SL)方面的评分,无论是对比Qwen2-7B-Instruct,还是GLM4-9b-Chat,都已经有了较大的提升。

而通过实验4的13.6K条数据2个epoch的定制训练,模型综合指标(S-avg)就已经达到达到最佳。在这个基础上,额外进行了基于LongWriter-6k-filtered 666 条数据的2个epoch退火训练,则在SL, SQ和S-avg几个指标上都全面超越了其他测试模型

其中具体实验5的退火(annealing)训练的命令行如下:

CUDA_VISIBLE_DEVICES=0,1,2,3 nohup swift sft \
    --model_type qwen2_5-7b-instruct \
    --dataset longwriter-6k-filtered#666 \
    --max_length 28672 \
    --num_train_epochs 2 \
    --eval_steps 200 \
    --batch_size 1 \
    --gradient_accumulation_steps 64 \
    --gradient_checkpointing true \
    --warmup_ratio 0.1 \
    --learning_rate 2e-6 \
    --sft_type full \
    --loss_name long-ce \
    --check_dataset_strategy warning \
    --save_only_model false \
    --save_total_limit -1 \
    --lazy_tokenize true \
    --dataloader_num_workers 1 \
    --resume_only_model true \
    --neftune_noise_alpha 5 \
    --use_flash_attn true \
    --resume_from_checkpoint {previous-checkpoint-path} > {output-checkpoint-path}

最终采取实验5的产出模型,作为MS-LongWriter-Qwen2.5-7B-Instruct开源到了ModelScope。

微调对于基础能力的影响

最后,为评估针对遵循指令进行长文本写作任务定制的模型,在基础能力上是否存在退化,在mmlu、ceval、ARC_c、gsm8k上,使用EvalScope对于MS-LongWriter-Qwen2-7b-instruct进行了评估。

通过swift接口与EvalScope的对接,可以一键完成模型部署,推理和评估流程。

例如可以通过如下命令,完成对于Qwen2-7b-instruct的基础能力评估:

‍比较几个模型在基础benchamrk上的得分,结果如下:

f139ba28fceb53031588093514dd43a9.png

可以看到,针对遵循指令进行长文本写作任务定制微调的模型,除了在ceval上有一些提升,在其他通用任务,尤其是偏逻辑推理的benchmark上,能力还是会有一定的regression,例如在MMLU上的掉点是较为明显的。

结论

总体来看,多种证据表明,针对遵循指令进行长文本写作这个任务,要来训练定制模型,训练数据的质量,会比数量更加重要。

且在这个任务上,可能从对齐的chat或instruct模型开始训练,会比从未对齐的base模型开始训练更加经济。

在这个最佳实践中,得益于ModelScope Swift训练工具和EvalScope评估工具,团队很方便的进行了各种不同的对比实验。

本文中使用到的开源工具包括:

  • 模型训练微调框架:MS-Swift

  • 模型评估工具:EvalScope

并且通过基于chat和instruct模型作为起点,只使用相比原始LongWrite训练所需的3.7%的数据和计算消耗,就在Qwen2-7b-instruct和GLM4-9b-Chat上,在长文本撰写任务上都获得了和原paper里几乎一致的效果提升(12pt左右)。

而在Qwen2.5-7b-instruct本身提供了较好长文本输出能力的基础上,通过同样少量高质量数据的训练定制,在这个任务上,能全方位获得最佳的效果。

团队训练使用的数据,以及最后输出的模型,目前都开源到了ModelScope。

参考资料:

1LongWriter: Unleashing 10,000+ Word Generation from Long Context LLMs, Bai et al. 2024
2
Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing, Xu et al. 2024
3
LIMA: Less Is More for Alignment, Zhou et al. 2023
4
InstructionGPT-4: A 200-Instruction Paradigm for Fine-Tuning MiniGPT-4, Wei et al. 2023
5
Qwen2 Technical Report, Yang et al. 2024
6
ChatGLM: A Family of Large Language Models from GLM-130B to GLM-4 All Tools, ZhipuAI 2024

文中使用到的开源工具框架:
模型训练微调框架MS-Swifthttps://github.com/modelscope/ms-swift
模型评估工具EvalScopehttps://github.com/modelscope/evalscope/


精筛后的666条数据集构成的LongWriter-6K-Filtered数据集:

https://www.modelscope.cn/datasets/swift/longwriter-6k-filtered

训练微调后开源的长文本模型:

MS-LongWriter-Qwen2.5-7b-instruct
https://www.modelscope.cn/models/swift/MS-LongWriter-Qwen2.5-7B-Instruct

MS-LongWriter-Qwen2-7b-instruct
https://www.modelscope.cn/models/swift/MS-LongWriter-Qwen2-7B-Instruct

MS-LongWriter-GLM4-9B-Chat
https://www.modelscope.cn/models/swift/MS-LongWriter-GLM4-9B-Chat


原始开源的LongWriter-GLM4-9B模型:
https://www.modelscope.cn/models/ZhipuAI/LongWriter-glm4-9b

其他相关数据集

WildChat
https://www.modelscope.cn/datasets/thomas/WildChat

Magpie-Qwen2-Pro-200K-Chinese
https://modelscope.cn/datasets/AI-ModelScope/Magpie-Qwen2-Pro-200K-Chinese

Magpie-Qwen2-Pro-200K-English
https://modelscope.cn/datasets/AI-ModelScope/Magpie-Qwen2-Pro-200K-English


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值