如何解决redis的缓存击穿、缓存穿透、缓存雪崩等问题?

文章讨论了缓存击穿、缓存穿透和缓存雪崩三种常见问题,以及相应的解决策略。包括设置热点数据永不过期、使用锁机制、布隆过滤器、短暂缓存空结果、随机过期时间、二级缓存和构建高可用数据库集群等方法,以防止对数据库造成过大压力。

关注我,升职加薪就是你!

1. 缓存击穿:指一个非常热点的key在缓存过期的一刻,同时有大量的并发请求访问该key,导致所有请求都落到了数据库上,引起数据库压力过大甚至宕机。
解决方案
(1)设置热点数据永不过期。
(2)加互斥锁,只允许一个请求去查询数据库,其他请求等待结果即可。
(3)使用分布式锁保证只有一个请求去查询数据库。
2. 缓存穿透:指查询一个不存在的key,由于缓存是不命中时被动写的,并且出于容错考虑,如果从数据源查不到数据则不写入缓存,这将导致这个不存在的key每次请求都要到数据库中查询,从而可能压垮数据库。
解决方案
(1)设置布隆过滤器来拦截一部分不存在的key。
(2)对于查询到的空结果,也可以将其缓存起来,但过期时间较短,例如5分钟。
3. 缓存雪崩:指缓存中的大量数据在同一时间失效,导致大量请求直接打到数据库上,引起数据库压力过大甚至宕机。
解决方案
(1)给缓存的过期时间加上一个随机值,避免同一时间大量数据集中过期。
(2)设置二级缓存,即在缓存失效后,先访问一级缓存,如果一级缓存也没有,则再访问二级缓存,同时一级缓存和二级缓存的过期时间设置不同。
(3)搭建高可用的数据库集群,增加数据库的承载能力。

关注我,升职加薪就是你!

### Redis 缓存击穿雪崩穿透的概念及解决方案 #### 1. 缓存穿透 缓存穿透是指查询一个既不存在于数据库中,也不存在于缓存中的数据。这种情况下,由于缓存没有命中,请求会直接到达数据库,导致数据库压力增大[^1]。 - **原因**:某些恶意攻击者故意查询不存在的数据,或者系统中存在大量无效的缓存键。 - **解决方案**: - 使用布隆过滤器(Bloom Filter)提前判断数据是否存在数据库中。如果布隆过滤器返回不存在,则直接返回空结果,而不查询数据库[^2]。 - 对于不存在的数据,在缓存设置一个空值,并赋予较短的过期时间,防止后续重复查询。 ```python # 示例代码:使用布隆过滤器避免缓存穿透 from pybloom_live import BloomFilter bloom_filter = BloomFilter(capacity=100000, error_rate=0.001) def get_data(key): if key not in bloom_filter: return None # 数据不存在,直接返回 data = cache.get(key) if data is None: data = db.query(key) # 查询数据库 if data is None: cache.set(key, "NULL", ex=60) # 缓存空值 else: cache.set(key, data) return data ``` #### 2. 缓存击穿 缓存击穿是指某个热点数据缓存中过期时,恰好有大量请求同时访问该数据,导致这些请求都直接查询数据库,造成数据库压力骤增[^2]。 - **原因**:热点数据缓存过期时间设置不合理,或者多个请求在同一时间点访问过期的缓存。 - **解决方案**: - 设置随机的缓存过期时间,避免所有缓存同时过期。 - 使用互斥锁(Mutex)机制,确保只有一个线程去加载数据缓存中,其他线程等待加载完成后再从缓存中获取数据。 ```python # 示例代码:使用互斥锁避免缓存击穿 import redis from threading import Lock lock = Lock() cache = redis.StrictRedis() def get_data_with_mutex(key): data = cache.get(key) if data is not None: return data with lock: # 加锁 data = cache.get(key) # 再次检查缓存 if data is None: data = db.query(key) # 查询数据库 if data is not None: cache.set(key, data) return data ``` #### 3. 缓存雪崩 缓存雪崩是指大量缓存在同一时间过期,导致大量请求直接查询数据库,造成数据库压力过大甚至崩溃[^3]。 - **原因**:缓存的有效期设置不合理,导致大量缓存在同一时间失效。 - **解决方案**: - 为不同的缓存设置不同的过期时间,避免集中过期。 - 预热缓存:在系统启动或高峰来临前,主动加载热点数据缓存中。 - 使用 Redis 主从架构,当主节点故障时,从节点可以切换为主节点继续提供服务,避免因单点故障导致的缓存雪崩。 ```python # 示例代码:预热缓存 def preload_cache(): keys = db.get_hot_keys() # 获取热点数据的键 for key in keys: data = db.query(key) if data is not None: cache.set(key, data, ex=random.randint(90, 120)) # 设置随机过期时间 ``` ### 区别总结 | 问题 | 定义 | 原因 | 解决方案 | |------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------| | 缓存穿透 | 查询不存在的数据,导致缓存数据库均未命中 | 恶意攻击或无效查询 | 使用布隆过滤器或缓存空值 | | 缓存击穿 | 热点数据缓存过期时,大量请求同时访问数据库 | 缓存过期时间设置不合理 | 设置随机过期时间或使用互斥锁 | | 缓存雪崩 | 大量缓存同时过期,导致请求直接查询数据库 | 缓存有效期集中设置 | 设置不同过期时间、预热缓存、使用 Redis 主从架构 | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

徐先生Paul

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值