论文作者:Chenyang Zhao,Jia Wan,Antoni B. Chan
作者单位:City University of Hong Kong
论文链接:http://arxiv.org/abs/2504.09819v1
内容简介:
1)方向:目标检测
2)应用:目标检测
3)背景:在与一般场景相比,拥挤场景包含大量重叠的实例,导致目标检测器在训练时面临更为模糊的锚点,并且推理过程中更多的预测结果可能会被错误地抑制。
4)方法:本文提出了密度引导锚点(DGA)和密度引导非极大值抑制(DG-NMS)两种新策略。具体而言,DGA通过最小运输成本将每个地面真实目标的密度传输到每个锚点位置,从而共同计算最佳锚点分配和重加权策略。DG-NMS则利用预测的密度图自适应调整NMS阈值,减少误抑制现象。在最优传输(UOT)中,专门设计了一种重叠感知的传输成本,用于解决由相邻重叠物体引起的模糊锚点问题。
5)结果:在具有挑战性的CrowdHuman数据集和Citypersons数据集上的大量实验表明,所提出的密度引导检测器在拥挤场景中表现出色且具有鲁棒性。实验结果证明了该方法在处理高密度人群场景时的有效性和可靠性。