【Leecode】动态规划篇 之 打家劫舍(一)

动态规划

对于动态规划问题,我将拆解为如下五步曲,这五步都搞清楚了,才能说把动态规划真的掌握了!

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

198. 打家劫舍

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。
在这里插入图片描述

class Solution {
    public int rob(int[] nums) {
  		if(nums.length==0)return 0;
        if(nums.length==1)return nums[0];
        
        int[] dp = new int[nums.length];
        dp[0]=nums[0];
        dp[1]=Math.max(nums[0],nums[1]);

        for (int i = 2; i <nums.length ; i++) {
            dp[i]=Math.max(dp[i-2]+nums[i],dp[i-1]);
        }
        return dp[nums.length-1];
    }
}

213. 打家劫舍 II

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。

给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。
在这里插入图片描述
在这里插入图片描述

class Solution {
    public int rob(int[] nums) {
        if(nums.length==0)return 0;
        if(nums.length==1)return nums[0];

        int i = maxMoney(nums, 0, nums.length - 2);
        int i1 = maxMoney(nums, 1, nums.length - 1);

        return Math.max(i,i1);
    }

    public int maxMoney(int[] nums,int start,int end){
        if(start==end)return nums[start];
        
        int[] dp = new int[nums.length];
        dp[start]=nums[start];
        dp[start+1]=Math.max(nums[start],nums[start+1]);

        for (int i = start+2; i <dp.length ; i++) {
            dp[i]=Math.max(dp[i-2]+nums[i],dp[i-1]);
        }
        return dp[end];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值