ACM_模板_树状数组

本文介绍了一种高效的数据结构——树状数组,它以其简洁的代码实现了强大的功能。文章提供了树状数组的一维和二维实现代码,并解释了如何通过更新操作和获取前缀和来优化查询效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

树状数组作为一种很特别的数据结构,可能用magical也没法形容它的神奇,其神奇之处不仅仅在于只有几行长度的代码,所带来的优化也是其他结构所不能达到的。

树状数组的代码简洁,也可以把它作为黑箱算法,完全可以当模板使用。

const int maxn = 1002;
int c[maxn];
int Lowbit(int x)
{
	return x&(-x);
}
void update(int x,int detal)
{
	while(x <= maxn)
	{
		c[x] += detal;
		x += Lowbit(x);
	}
}
int getsum(int x)
{
	int sum =0;
	while(x > 0)
	{
		sum += c[x];
		x -= Lowbit(x);
	}
	return sum;
}

当数据在存储上是二维的形式的时候,树状数组也可以扩展到二维上。

const int maxn = 1002;
int c[maxn][maxn];
int Lowbit(int x)
{
	return x&(-x);
}
void update(int x,int y,int d)
{
	int i,j;
	for(i=x; i<maxn; i+=Lowbit(i))
		for(j=y; j<maxn; j+=Lowbit(j))
			c[i][j] += d;
}
int sum(int x,int y)
{
	int sum = 0,i,j;
	for(i=x; i>0; i-=Lowbit(i))
		for(j=y; j>0; j-=Lowbit(j))
			sum += c[i][j];
	return sum;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值