排序:
默认
按更新时间
按访问量

0417学习笔记:3.1决策树的构造-划分数据集

按照给定特征划分数据集(当我们按照某个特征划分数据集时,就需要将所有符合要求的元素抽取出来)def splitDataSet(dataSet, axis, value): #创建新的list对象(为了不修改原始数据集) retDataSet = [] for featVec in ...

2018-04-20 09:09:57

阅读数:80

评论数:0

0415学习笔记:3决策树

1.决策树--》处理分类问题。最常使用的数据挖掘算法。专家系统中经常使用2.优势:数据形式容易理解,计算复杂度不高,对中间值缺失不敏感,可处理不相关特征数据。缺:可能过度匹配3.信息增益:    划分数据集:无序数据变得有序--》》使用信息论度量信息如何计算信息增益?(集合信息的度量方式称为熵--...

2018-04-15 17:29:27

阅读数:49

评论数:0

0415学习笔记:2.3手写识别系统-k近邻算法

1.二进制图像转换为1x1024的向量def img2vector(filename): returnVect = zeros((1,1024)) fr = open(filename) for i in range(32): lineStr = fr.re...

2018-04-15 15:58:12

阅读数:63

评论数:0

0415学习笔记:k近邻算法总程序--约会网站预测函数

#coding:utf-8 from numpy import *#科学计算包 import operator #运算符模块 def createDataSet(): #创建数据集和标签 group = array([[1.0,1.1], [1.0,...

2018-04-15 14:36:32

阅读数:38

评论数:0

0415学习笔记:使用k近邻算法改进约会网站配对结果

1.准备数据:从文本文件中解析数据def file2matrix(filename): #输入:文本文件名字符串;输出:训练样本矩阵和类标签向量 fr = open(filename) arrayOlines = fr.readlines() numberOfLines =...

2018-04-15 14:34:30

阅读数:32

评论数:0

0415学习笔记:实施kNN算法

def classify0(inX, dataSet, labels, k): #inX is input vector, dataSet is training set 用于分类的输入向量是inX,输入的训练样本集为dataSet,标签向量为labels,最后的参数k表示用于选择最近邻居的数目 ...

2018-04-15 12:52:47

阅读数:18

评论数:0

0413学习笔记:实施kNN算法-构建分类器程序

def classify0(inX, dataSet, labels, k): #inX is input vector, dataSet is training set dataSetSize = dataSet.shape[0] #calculate distance diff...

2018-04-13 11:36:08

阅读数:31

评论数:0

0413学习笔记:实施kNN算法过程中的一些小问题

改变当前路径:import kNN sys.path.append('/home/yang/Software/pycharm-community-2017.3.4/bin/桌面/PycharmProjects/untitled/k18')调用kNNimport kNN创建两个变量group,lab...

2018-04-13 11:23:32

阅读数:29

评论数:2

0412学习笔记:numpy

调用numpyfrom numpy import *生成4*4随机数组:random.rand(4,4) Out[7]: array([[ 0.53488217, 0.91218101, 0.57634862, 0.70327876], [ 0.00937165, 0.80...

2018-04-12 21:55:50

阅读数:35

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭