有道经典的算法题,100层楼,两个鸡蛋。某层之上扔鸡蛋就会碎。问至少要测试多少次才能找出这层楼来。
如果只有一个鸡蛋,我就只能一层一层试验。两个的话关键就是找着第一个鸡蛋试验的位置,第二个鸡蛋还是只能一层一层试验。
这道问题其实可以扩展到任意个鸡蛋,但现在还是只看2个鸡蛋的情况。
2个鸡蛋只有n层的最优解求出来假使为k,那么,n+1层的时候,把第一个鸡蛋在第k层释放,只有两种情况(n+1只是分解成两个<=n的子问题,这两个都是已经有解了的):
(1)破碎,于是只有之后就只能遍历从地面到第k-1层,一层层遍历,不能偷懒,最坏的情况在此要尝试k次;
(2)没碎,那问题不就变成了要在n-k层里面求解的子问题了吗?
假设最优解y=f(2,n),所以得到:
f(2,n+1) = max(k, f(2,n-k)+1)
接下去的递归求解就豁然开朗了。
我本以为问题就差不多可以结了,赶紧去写代码吧,可是小罗同学叫住我了:
表急,好像有更简单的解法:
找一个k k(k+1)/2>=100,k可取的最小整数值就是最优解
这个好像是猜出来的,得证明一下。
(a)要证明k(k+1)/2>=n里面k是可以准确找出这层楼的解;
(b)当k<=k-1的时候,不等式恒不成立
这样才能得出这个k是最优解。
小罗同学说,可以用数学归纳法证明这第(a)点:
k=1时,1(1+1)/2>=1成立。 现在用数学归纳法,根据f(k-1)=(k-1)(k-1+1)/2>=n-k,得出f(k)=k(k+1)>=n,依据是前面提到了碎和没碎两种情况的分类讨论。
当然,还可以用“递降法”:
要证明k(k+1)>n 只需要证明(k-1)(k-1+1)/2>=n-k 只需要证明(k-2)(k-2+1)/2>=n-k-(k-1) …… 只需要证明0>=n-(k+k-1+k-2+...1) 等价于k(k+1)/2>=n
无论如何,这只完成了上面的第(a)点,还有第(b)点没有证明呢,即:
当k<=k-1的时候,不等式恒不成立,又即下面的不等式恒成立:
(k-1)k/2<n
走到这一步似乎没法进行下去了……
谁来为我指指路呢?呵呵。
--------------------------------------------------------------------------------------------------------------------------------
2012-2-3晚上补充:
上式的解决办法,还是数学归纳法:
f(k)的时候,第一次测试不能高于k层(因为第一次测试高于k的时候,如果碎了,就肯定不能保证k次测试出来了) 如果f(k)=x,第一次不能高于k,那么剩下至少是x-k是吧 剩下的次数是k-1次是吧 所以x-k>=f(k-1)=(k-1)(k-1+1)/2 所以x>=k(k+1)/2 又显然f(1)=1(1+1)/2=1 所以对于f(k-1)成立的话,f(k)也成立
文章系本人原创,转载请注明出处和作者