算法训练 审美课(异或运算 + 状态压缩)

本文介绍了一道算法竞赛题目,旨在找出学生答案中完全相反的对数。通过优化算法,避免了传统的双层循环,采用状态压缩技术,将学生答案转化为二进制数进行高效计算,最终输出完全相反答案的对数。

试题 算法训练 审美课

资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
  《审美的历程》课上有n位学生,帅老师展示了m幅画,其中有些是梵高的作品,另外的都出自五岁小朋友之手。老师请同学们分辨哪些画的作者是梵高,但是老师自己并没有答案,因为这些画看上去都像是小朋友画的……老师只想知道,有多少对同学给出的答案完全相反,这样他就可以用这个数据去揭穿披着皇帝新衣的抽象艺术了(支持帅老师_)。
  答案完全相反是指对每一幅画的判断都相反。
输入格式
  第一行两个数n和m,表示学生数和图画数;
  接下来是一个n*m的01矩阵A:
  如果aij=0,表示学生i觉得第j幅画是小朋友画的;
  如果aij=1,表示学生i觉得第j幅画是梵高画的。
输出格式
  输出一个数ans:表示有多少对同学的答案完全相反。
样例输入
3 2
1 0
0 1
1 0
样例输出
2
样例说明
  同学1和同学2的答案完全相反;
  同学2和同学3的答案完全相反;
  所以答案是2。
数据规模和约定
  对于50%的数据:n<=1000;
  对于80%的数据:n<=10000;
  对于100%的数据:n<=50000,m<=20。

题解
  一开始很容易想到双层for循环来做(伪代码如下),但是注意到,n的大小可能到达105,那么n2就是1010,是不能在1s之内完成的。

for(int i=0;i<n;i++)
	for(int j=i+1;j<n;j++)
		if(i的作答与j的作答完全相反)
			ans++;

  正确解法是,在遍历一个小朋友的时候,直接去看与它相反的答案上,有没有小朋友作答。想一下,这样只需要一边for循环即可完成。
  要实现上述算法,我们需要一个cnt数组,记录每个小朋友的答案,可以把每一行看作一个字符串,到时候遍历每一位取反即可,但是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值