试题 算法训练 审美课
资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
《审美的历程》课上有n位学生,帅老师展示了m幅画,其中有些是梵高的作品,另外的都出自五岁小朋友之手。老师请同学们分辨哪些画的作者是梵高,但是老师自己并没有答案,因为这些画看上去都像是小朋友画的……老师只想知道,有多少对同学给出的答案完全相反,这样他就可以用这个数据去揭穿披着皇帝新衣的抽象艺术了(支持帅老师_)。
答案完全相反是指对每一幅画的判断都相反。
输入格式
第一行两个数n和m,表示学生数和图画数;
接下来是一个n*m的01矩阵A:
如果aij=0,表示学生i觉得第j幅画是小朋友画的;
如果aij=1,表示学生i觉得第j幅画是梵高画的。
输出格式
输出一个数ans:表示有多少对同学的答案完全相反。
样例输入
3 2
1 0
0 1
1 0
样例输出
2
样例说明
同学1和同学2的答案完全相反;
同学2和同学3的答案完全相反;
所以答案是2。
数据规模和约定
对于50%的数据:n<=1000;
对于80%的数据:n<=10000;
对于100%的数据:n<=50000,m<=20。
题解
一开始很容易想到双层for循环来做(伪代码如下),但是注意到,n的大小可能到达105,那么n2就是1010,是不能在1s之内完成的。
for(int i=0;i<n;i++)
for(int j=i+1;j<n;j++)
if(i的作答与j的作答完全相反)
ans++;
正确解法是,在遍历一个小朋友的时候,直接去看与它相反的答案上,有没有小朋友作答。想一下,这样只需要一边for循环即可完成。
要实现上述算法,我们需要一个cnt数组,记录每个小朋友的答案,可以把每一行看作一个字符串,到时候遍历每一位取反即可,但是

本文介绍了一道算法竞赛题目,旨在找出学生答案中完全相反的对数。通过优化算法,避免了传统的双层循环,采用状态压缩技术,将学生答案转化为二进制数进行高效计算,最终输出完全相反答案的对数。
最低0.47元/天 解锁文章
1733

被折叠的 条评论
为什么被折叠?



