Real-time Expression Transfer for Facial Reenactment

Real-time Expression Transfer for Facial Reenactment

SGASIA 2015

J. Thies 1M. Zollhöfer 2M. Nießner 3L. Valgaerts 2M. Stamminger 1C. Theobalt 2
1 University of Erlangen-Nuremberg2 Max Planck Institute for Informatics 3 Stanford University


Abstract

We present a method for the real-time transfer of facial expressions from an actor in a source video to an actor in a target video, thus enabling the ad-hoc control of the facial expressions of the target actor. The novelty of our approach lies in the transfer and photo-realistic re-rendering of facial deformations and detail into the target video in a way that the newly-synthesized expressions are virtually indistinguishable from a real video. To achieve this, we accurately capture the facial performances of the source and target subjects in real-time using a commodity RGB-D sensor. For each frame, we jointly fit a parametric model for identity, expression, and skin reflectance to the input color and depth data, and also reconstruct the scene lighting. For expression transfer, we compute the difference between the source and target expressions in parameter space, and modify the target parameters to match the source expressions. A major challenge is the convincing re-rendering of the synthesized target face into the corresponding video stream. This requires a careful consideration of the lighting and shading design, which both must correspond to the real-world environment. We demonstrate our method in a live setup, where we modify a video conference feed such that the facial expressions of a different person (e.g., translator) are matched in real-time.


PaperVideoTalk

Video


Bibtex

 
@article{thies2015realtime,
   title     = {Real-time Expression Transfer for Facial Reenactment},
   author    = {Thies, J. and Zollh{\"o}fer, M. and Nie{\ss}ner, M. and Valgaerts, L. and Stamminger, M. and Theobalt, C.},
   journal   = {ACM Transactions on Graphics (TOG)},
   publisher = {ACM},
   volume    = {34},
   number    = {6},
   year      = {2015}
}
		
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值