吕无邪GZ
码龄8年
关注
提问 私信
  • 博客:4,895
    4,895
    总访问量
  • 3
    原创
  • 1,707,036
    排名
  • 157
    粉丝
  • 2
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:安徽省
  • 加入CSDN时间: 2016-07-28
博客简介:

RelationEr7的博客

查看详细资料
个人成就
  • 获得2次点赞
  • 内容获得2次评论
  • 获得15次收藏
创作历程
  • 1篇
    2022年
  • 2篇
    2021年
成就勋章
TA的专栏
  • 笔记
兴趣领域 设置
  • Java
    java
  • 大数据
    hadoop
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

182人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

UCL-Dehaze: Towards Real-world Image Dehazing via Unsupervised Contrastive Learning 基于对比学习的无监督真实图像去雾

概述本文提出了一种有效的无监督对比学习范式 ——ucl-dehaze。未配对的真实世界清晰图像和模糊图像很容易获取,在训练UCL-Dehaze网络时分别作为 重要的正样本和负样本。为了更有效地训练网络,我们 提出了一种新的自我对比感知损失函数,它鼓励去雾后 的图像在嵌入空间中接近正样本,远离负样本。除了ucl-dehaze的整体网络结构外,利用对抗训练来调整正样本和去雾图像之间的分布。与现有的图像去雾算法相比,ucl-dehaze算法在训练过程中不需要配对数据,并且使用了不成对的正负数据通过对比来提高网
原创
发布博客 2022.05.20 ·
1184 阅读 ·
2 点赞 ·
2 评论 ·
13 收藏

图像分割概述

图像分割是计算机视觉研究的一个重要且基础的课题,主要有三种划分方式:普通分割(按像素区域分开)、语义分割(不同区域的语义)、实例分割(像素级别区分图中的实体)。图像分割早期采用传统图像处理方法,现主流技术手段是采用深度学习的方法,如FCN、U-net等。...
原创
发布博客 2021.11.10 ·
2932 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

简单卷积神经网络Pytorch实现(MNIST数据集分类)

import torchimport torch.utils.datafrom torchvision import datasets, transformsfrom tqdm import tqdm# 指定设备device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')print('device:{}'.format(device))# 定义预处理transform = transforms.Compose(.
原创
发布博客 2021.11.10 ·
737 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏