UCL-Dehaze: Towards Real-world Image Dehazing via Unsupervised Contrastive Learning 基于对比学习的无监督真实图像去雾
概述本文提出了一种有效的无监督对比学习范式 ——ucl-dehaze。未配对的真实世界清晰图像和模糊图像很容易获取,在训练UCL-Dehaze网络时分别作为 重要的正样本和负样本。为了更有效地训练网络,我们 提出了一种新的自我对比感知损失函数,它鼓励去雾后 的图像在嵌入空间中接近正样本,远离负样本。除了ucl-dehaze的整体网络结构外,利用对抗训练来调整正样本和去雾图像之间的分布。与现有的图像去雾算法相比,ucl-dehaze算法在训练过程中不需要配对数据,并且使用了不成对的正负数据通过对比来提高网




