模:域上的向量空间的推广

向量空间

称 V 为 域 P 上 的 一 个 线 性 空 间 , 或 向 量 空 间 , V 中 元 素 称 为 向 量 。 称V为域P上的一个线性空间,或向量空间,V中元素称为向量。 VP线V

1.加法: ∀ α , β ∈ V → α + β ∈ V \forall α,β\in V\rightarrow α+β\in V α,βVα+βV

2.数乘: k ∈ P , α ∈ V → k α ∈ V k\in P,α\in V \rightarrow kα\in V kP,αVkαV

加法和数乘需要满足的一堆条件:

1 ) α + β = β + α , 对 任 意 α , β ∈ V . 2 ) α + ( β + γ ) = ( α + β ) + γ , 对 任 意 α , β , γ ∈ V . 3 ) 存 在 一 个 元 素 0 ∈ V , 对 一 切 α ∈ V 有 α + 0 = α , 元 素 0 称 为 V 的 零 元 . 4 ) 对 任 一 α ∈ V , 都 存 在 β ∈ V 使 α + β = 0 , β 称 为 α 的 负 元 素 , 记 为 − α . 5 ) 对 P 中 单 位 元 1 , 有 1 α = α ( α ∈ V ) . 6 ) 对 任 意 k , l ∈ P , α ∈ V 有 ( k l ) α = k ( l α ) . 7 ) 对 任 意 k , l ∈ P , α ∈ V 有 ( k + l ) α = k α + l α . 8 ) 对 任 意 k ∈ P , α , β ∈ V 有 k ( α + β ) = k α + k β \tiny 1) α+β=β+α,对任意α,β∈V.\\ 2) α+(β+γ)=(α+β)+γ,对任意α,β,γ∈V.\\ 3) 存在一个元素0∈V,对一切α∈V有α+0=α,元素0称为V的零元.\\ 4) 对任一α∈V,都存在β∈V使α+β=0,β称为α的负元素,记为-α.\\ 5) 对P中单位元1,有1α=α(α∈V).\\ 6) 对任意k,l∈P,α∈V有(kl)α=k(lα).\\ 7) 对任意k,l∈P,α∈V有(k+l)α=kα+lα.\\ 8) 对任意k∈P,α,β∈V有k(α+β)=kα+kβ 1)α+β=β+ααβV.2)α+(β+γ)=(α+β)+γαβγV.3)0VαVα+0=α0V.4)αVβV使α+β=0βαα.5)P11α=α(αV).6)klPαV(kl)α=k(lα).7)klPαV(k+l)α=kα+lα.8)kPαβVk(α+β)=kα+kβ

R n : 全 体 n 维 实 的 列 向 量 构 成 的 集 合 R^n:全体n维实的列向量构成的集合 Rn:n
R 模 ( R − m o d u l e ) 向 量 空 间 概 念 的 一 种 推 广 . 用 以 描 述 更 一 般 的 线 性 系 统 . R模(R-module)向量空间概念的一种推广.用以描述更一般的线性系统. R(Rmodule)广.线.
环 R 本 身 也 是 一 个 R 模 。 因 为 R 是 一 个 加 法 的 A b e l 群 , 且 自 身 保 持 乘 法 封 闭 环R本身也是一个R模。因为R是一个加法的Abel群,且自身保持乘法封闭 RRRAbel

模的概念(没有区分左右)

R × M → M 模 : 幺 环 × 交 换 群 → 交 换 群 群 中 的 元 素 只 有 一 个 运 算 , 所 以 两 个 结 构 链 接 的 法 则 就 是 “ + ”   子 模 : 模 的 自 然 的 子 结 构   ( a , x + N ) → a x + N 商 模 : R ∗ M / N → M / N 同 态 基 本 定 理 的 两 个 推 论 : ① : 两 个 子 模 有 M 1 > N , 则 M / M 1 = ( M / N ) / ( M 1 / N ) ② : 两 个 子 模 H , N , 则 ( H + N ) / N 同 构 H / ( H ∩ N ) R× M \rightarrow M\\ 模:幺环 × 交换群 \rightarrow 交换群\\ \tiny{群中的元素只有一个运算,所以两个结构链接的法则就是“+”}\normalsize \ \\ 子模:模的自然的子结构\\ \ \\ (a,x+N) \rightarrow ax+N \\ 商模:R * M/N \rightarrow M/N \\ \tiny 同态基本定理的两个推论:\\ ①:两个子模有M_1>N,则M/M_1=(M/N)/(M_1/N)\\ ②:两个子模H,N,则(H+N)/N 同构 H/(H\cap N) R×MM×+  (a,x+N)ax+NRM/NM/NM1>NM/M1=(M/N)/(M1/N)H,N(H+N)/NH/(HN)

例子:

1.交换群的分类

任 意 一 个 A b e l 群 是 一 个 Z 模 , Z 为 整 数 环 任意一个Abel群是一个Z模,Z为整数环 AbelZZ

2.若当标准型(存在且唯一)

2.1 设 V 是 域 F 上 的 线 性 空 间 , 则 [ 公 式 ] 是 一 个 F 模 2.1设V是域F上的线性空间,则[公式]是一个F模 2.1VF线,[]F
设 V 是 域 F 上 的 线 性 空 间 . T 是 V 中 给 定 的 线 性 变 换 . 存 在 一 个 多 项 式 现 在 令 F [ λ ] 是 F 上 的 一 元 多 项 式 环 , 幺 环 × 交 换 群 → 交 换 群 f ( λ ) × a → F ( T ) a    ( 其 中 : a ∈ V , f ( λ ) ∈ F [ λ ] ) 则 V 是 一 个 左 F [ λ ] 模 . 设V是域F上的线性空间.\\ T是V中给定的线性变换.存在一个多项式\\现在令F[\lambda]是F上的一元多项式环,\\ 幺环 × 交换群 \rightarrow 交换群\\ f(\lambda) × a \rightarrow F(T) a\ \ (其中:a\in V,f(\lambda)\in F[\lambda])\\ 则V是一个左F[\lambda]模. VF线.TV线.F[λ]F,×f(λ)×aF(T)a  (aV,f(λ)F[λ])VF[λ].
多 项 式 ? → 从 特 征 值 和 哈 密 顿 凯 莱 定 理 开 始 多项式?\rightarrow 从特征值和哈密顿凯莱定理开始 ?

3.代数拓扑

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值