驯服不可微操作——梯度的“代理”艺术**

教程:驯服不可微操作——梯度的“代理”艺术

第一部分:核心思想——计算图的“双重人格”

在标准的深度学习中,前向传播和反向传播是“镜像”关系:反向传播严格地沿着前向传播的路径反向计算导数。但为了处理离散操作,我们打破这种对称性,赋予计算图一种“双重人格”:

  1. 前向人格(执行者):它忠实地执行我们定义的任何操作,无论是否离散。如果是argmax,它就输出索引;如果是量化,它就输出离散的整数。它的目标是计算出模型的真实输出
  2. 反向人格(引路人):它的唯一任务是为梯度找到一条从损失函数回到参数的、平滑的、有意义的路径。它不关心前向传播的“硬”操作,而是寻找一个功能相似、但完全可微的“代理操作”(Proxy/Surrogate),并假装梯度是从这个代理操作回传的。

这个核心思想让我们鱼与熊掌兼得:既能在模型中执行必要的离散决策,又能利用基于梯度的优化器来有效训练模型。

反向传播 (引路人)
前向传播 (执行者)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱看烟花的码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值