数据挖掘——特征工程

数据挖掘

一、EDA探索性数据分析
二、特征工程

——————————————————————————————————————————————————————

目录在网页的右边小框框处有喔~

二、特征工程

内容介绍

常见的特征工程包括:

在这里插入图片描述

1.异常处理:

  ·通过箱线图(或 3-Sigma)分析删除异常值;
 
  ·BOX-COX 转换(处理有偏分布);
  
  ·长尾截断;

2.特征归一化/标准化:

 ·标准化(转换为标准正态分布);
  
  ·归一化(抓换到 [0,1] 区间);
  
  ·针对幂律分布,可以采用公式:log(1+x/1+median)  

3.数据分桶:

  ·等频分桶;
  
  ·等距分桶;
  
  ·Best-KS 分桶(类似利用基尼指数进行二分类);
  
  ·卡方分桶;

4.缺失值处理:

 ·不处理(针对类似 XGBoost 等树模型);
  
  ·删除(缺失数据太多);
  
  ·插值补全,包括均值/中位数/众数/建模预测/多重插补/压缩感知补全/矩阵补全等;
  
  ·分箱,缺失值一个箱;

5.特征构造:

  ·构造统计量特征,报告计数、求和、比例、标准差等;
  
  ·时间特征,包括相对时间和绝对时间,节假日,双休日等;
  
  ·地理信息,包括分箱,分布编码等方法;
  
  ·非线性变换,包括 log/ 平方/ 根号等;
  
  ·特征组合,特征交叉;
  
  ·仁者见仁,智者见智。

6.特征筛选

  ·过滤式(filter):先对数据进行特征选择,然后在训练学习器,常见的方法有 Relief/方差选择发/相关系数法/卡方检验法/互信息法;
  
  ·包裹式(wrapper):直接把最终将要使用的学习器的性能作为特征子集的评价准则,常见方法有 LVM(Las Vegas Wrapper) ;
  
  ·嵌入式(embedding):结合过滤式和包裹式,学习器训练过程中自动进行了特征选择,常见的有 lasso 回归;

7.降维

  ·PCA/ LDA/ ICA;
  
  ·特征选择也是一种降维。

异常处理

import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
from operator import itemgetter
from scipy import stats,special

%matplotlib inline

Train_data = pd.read_csv('/home/ricardo/dw/train.csv', sep=' ')
Test_data = pd.read_csv('/home/ricardo/dw/test.csv', sep=' ')

箱线图分析删除异常值

def outliers_proc(data, col_name, scale=3):
    """
    用于清洗异常值,默认用 box_plot(scale=3)进行清洗
    :param data: 接收 pandas 数据格式
    :param col_name: pandas 列名
    :param scale: 尺度
    :return:
    """

    def box_plot_outliers(data_ser, box_scale):
        """
        利用箱线图去除异常值
        :param data_ser: 接收 pandas.Series 数据格式
        :param box_scale: 箱线图尺度,
        :return:
        """
        iqr = box_scale * (data_ser.quantile(0.75) - data_ser.quantile(0.25)) #四分位距大小
        val_low = data_ser.quantile(0.25) - iqr
        val_up = data_ser.quantile(0.75) + iqr
        rule_low = (data_ser < val_low)#返是离群值则返回true,否则false
        rule_up = (data_ser > val_up)#返是离群值则返回true,否则false
        return (rule_low, rule_up), (val_low, val_up)

    data_n = data.copy()
    data_series = data_n[col_name]
    rule, value = box_plot_outliers(data_series, box_scale=scale)
    index = np.arange(data_series.shape[0])[rule[0] | rule[1]]
       #shape[0]只读取第一维度长度,arrange返回一个有终点和起点的固定步长的排列,一竖是或运算
    #获取离群值的索引
    print("Delete number is: {}".format(len(index)))
    data_n = data_n.drop(index)
    data_n.reset_index(drop=True, inplace=True)
    print("Now column number is: {}".format(data_n.shape[0]))
    index_low = np.arange(data_series.shape[0])[rule[0]]
    outliers = data_series.iloc[index_low]
    print("Description of data less than the lower bound is:")
    print(pd.Series(outliers).describe())
    index_up = np.arange(data_series.shape[0])[rule[1]]
    outliers = data_series.iloc[index_up]
    print("Description of data larger than the upper bound is:")
    print(pd.Series(outliers).describe())
    
    fig, ax = plt.subplots(1, 2, figsize=(10, 7))
    sns.boxplot(y=data[col_name], data=data, palette="Set1", ax=ax[0])
    sns.boxplot(y=data_n[col_name], data=data_n, palette="Set1", ax=ax[1])
    return data_n

3-sigma原则

"""
    3sigma原则:数值分布在(μ-3σ,μ+3σ)中的概率为0.9974;
"""
def three_sigma(Ser1):
    '''
    Ser1:表示传入DataFrame的某一列。
    '''
    rule = (Ser1.mean()-3*Ser1.std()>Ser1) | (Ser1.mean()+3*Ser1.std()< Ser1)
    index = np.arange(Ser1.shape[0])[rule]
    outrange = Ser1.iloc[index]
    return outrange


# 我们可以删掉一些异常数据,以 power 为例。  
# 这里删不删同学可以自行判断
# 但是要注意 test 的数据不能删 = = 不能掩耳盗铃是不是

Train_data = outliers_proc(Train_data, 'power', scale=3)
Delete number is: 963
Now column number is: 149037
Description of data less than the lower bound is:
count    0.0
mean     NaN
std      NaN
min      NaN
25%      NaN
50%      NaN
75%      NaN
max      NaN
Name: power, dtype: float64
Description of data larger than the upper bound is:
count      963.000000
mean       846.836968
std       1929.418081
min        376.000000
25%        400.000000
50%        436.000000
75%        514.000000
max      19312.000000
Name: power, dtype: float64

在这里插入图片描述

Box-Cox转换

#from scipy.stats import boxcox

#Train_data['power'].fillna(0)
#Train_data.loc[Train_data['power']==0]=1e-5
#print(Train_data['power'].value_counts())
#boxcox_transformed_data =boxcox(Train_data['power'])
#fig, ax = plt.subplots(1, 2, figsize=(10, 7))

#sns.boxplot(data=Train_data['power'],ax=ax[0])

#sns.boxplot(data=boxcox_transformed_data,ax=ax[1])

在这里插入图片描述

长尾截断

可以用Log变换,也可以将离群值转换为箱线图最大值

特征构造

# 训练集和测试集放在一起,方便构造特征
Train_data['train']=1
Test_data['train']=0
data = pd.concat([Train_data, Test_data], ignore_index=True,sort=False)
# 使用时间:data['creatDate'] - data['regDate'],反应汽车使用时间,一般来说价格与使用时间成反比
# 不过要注意,数据里有时间出错的格式,所以我们需要 errors='coerce'
data['used_time'] = (pd.to_datetime(data['creatDate'], format='%Y%m%d', errors='coerce') - 
                            pd.to_datetime(data['regDate'], format='%Y%m%d', errors='coerce')).dt.days

pandas.to_datetime(arg,errors,utc,format,unit)
参数errors:
‘raise’,则无效的解析将引发异常

‘coerce’,那么无效解析将被设置为NaT

‘ignore’,那么无效的解析将返回输入值

参数format:格式化显示时间的格式。

# 看一下空数据,有 15k 个样本的时间是有问题的,我们可以选择删除,也可以选择放着。
# 但是这里不建议删除,因为删除缺失数据占总样本量过大,7.5%
# 我们可以先放着,因为如果我们 XGBoost 之类的决策树,其本身就能处理缺失值,所以可以不用管;
data['used_time'].isnull().sum()
15072
# 计算某品牌的销售统计量,同学们还可以计算其他特征的统计量
# 这里要以 train 的数据计算统计量
Train_gb = Train_data.groupby("brand")
all_info = {}
for kind, kind_data in Train_gb:
    info = {}
    kind_data = kind_data[kind_data['price'] > 0]
    info['brand_amount'] = len(kind_data)
    info['brand_price_max'] = kind_data.price.max()
    info['brand_price_median'] = kind_data.price.median()
    info['brand_price_min'] = kind_data.price.min()
    info['brand_price_sum'] = kind_data.price.sum()
    info['brand_price_std'] = kind_data.price.std()
    info['brand_price_average'] = round(kind_data.price.sum() / (len(kind_data) + 1), 2)
    all_info[kind] = info
brand_fe = pd.DataFrame(all_info).T.reset_index().rename(columns={"index": "brand"})
data = data.merge(brand_fe, how='left', on='brand')

# 数据分桶 以 power 为例
# 这时候我们的缺失值也进桶了,
# 为什么要做数据分桶呢,原因有很多,= =
# 1. 离散后稀疏向量内积乘法运算速度更快,计算结果也方便存储,容易扩展;
# 2. 离散后的特征对异常值更具鲁棒性,如 age>30 为 1 否则为 0,对于年龄为 200 的也不会对模型造成很大的干扰;
# 3. LR 属于广义线性模型,表达能力有限,经过离散化后,每个变量有单独的权重,这相当于引入了非线性,能够提升模型的表达能力,加大拟合;
# 4. 离散后特征可以进行特征交叉,提升表达能力,由 M+N 个变量编程 M*N 个变量,进一步引入非线形,提升了表达能力;
# 5. 特征离散后模型更稳定,如用户年龄区间,不会因为用户年龄长了一岁就变化

# 当然还有很多原因,LightGBM 在改进 XGBoost 时就增加了数据分桶,增强了模型的泛化性

bin = [i*10 for i in range(31)]
data['power_bin'] = pd.cut(data['power'], bin, labels=False)
data[['power_bin', 'power']].head()

#将data划分在指定的序列bin中,若不在该序列中,则是NaN

#qcut是等频分桶

power_bin power
0 5.0 60
1 NaN 0
2 16.0 163
3 19.0 193
4 6.0 68
# 删除不需要的数据
data = data.drop(['creatDate', 'regDate', 'regionCode'], axis=1)
print(data.shape)
data.columns
(199037, 38)





Index(['SaleID', 'name', 'model', 'brand', 'bodyType', 'fuelType', 'gearbox',
       'power', 'kilometer', 'notRepairedDamage', 'seller', 'offerType',
       'price', 'v_0', 'v_1', 'v_2', 'v_3', 'v_4', 'v_5', 'v_6', 'v_7', 'v_8',
       'v_9', 'v_10', 'v_11', 'v_12', 'v_13', 'v_14', 'train', 'used_time',
       'brand_amount', 'brand_price_max', 'brand_price_median',
       'brand_price_min', 'brand_price_sum', 'brand_price_std',
       'brand_price_average', 'power_bin'],
      dtype='object')
# 目前的数据其实已经可以给树模型使用了,所以我们导出一下
data.to_csv('/home/ricardo/dw/data_for_tree.csv', index=0)
# 我们可以再构造一份特征给 LR NN 之类的模型用
# 之所以分开构造是因为,不同模型对数据集的要求不同
# 我们看下数据分布:
data['power'].plot.hist()
<matplotlib.axes._subplots.AxesSubplot at 0x7f5072ddef90>

在这里插入图片描述

# 我们刚刚已经对 train 进行异常值处理了,但是现在还有这么奇怪的分布是因为 test 中的 power 异常值,
# 所以我们其实刚刚 train 中的 power 异常值不删为好,可以用长尾分布截断来代替
Train_data['power'].plot.hist()
<matplotlib.axes._subplots.AxesSubplot at 0x7f5073af7b90>

在这里插入图片描述

# 我们对其取 log,在做归一化
from sklearn import preprocessing
min_max_scaler = preprocessing.MinMaxScaler()
data['power'] = np.log(data['power'] + 1) 
data['power'] = ((data['power'] - np.min(data['power'])) / (np.max(data['power']) - np.min(data['power'])))
data['power'].plot.hist()
<matplotlib.axes._subplots.AxesSubplot at 0x7f5074ebf610>

在这里插入图片描述

# km 的比较正常,应该是已经做过分桶了
data['kilometer'].plot.hist()
<matplotlib.axes._subplots.AxesSubplot at 0x7f50741e3a90>

在这里插入图片描述

# 所以我们可以直接做归一化
data['kilometer'] = ((data['kilometer'] - np.min(data['kilometer'])) / 
                        (np.max(data['kilometer']) - np.min(data['kilometer'])))
data['kilometer'].plot.hist()
<matplotlib.axes._subplots.AxesSubplot at 0x7f50740f8490>

在这里插入图片描述

# 除此之外 还有我们刚刚构造的统计量特征:
# 'brand_amount', 'brand_price_average', 'brand_price_max',
# 'brand_price_median', 'brand_price_min', 'brand_price_std',
# 'brand_price_sum'
# 这里不再一一举例分析了,直接做变换,
def max_min(x):
    return (x - np.min(x)) / (np.max(x) - np.min(x))

data['brand_amount'] = ((data['brand_amount'] - np.min(data['brand_amount'])) / 
                        (np.max(data['brand_amount']) - np.min(data['brand_amount'])))
data['brand_price_average'] = ((data['brand_price_average'] - np.min(data['brand_price_average'])) / 
                               (np.max(data['brand_price_average']) - np.min(data['brand_price_average'])))
data['brand_price_max'] = ((data['brand_price_max'] - np.min(data['brand_price_max'])) / 
                           (np.max(data['brand_price_max']) - np.min(data['brand_price_max'])))
data['brand_price_median'] = ((data['brand_price_median'] - np.min(data['brand_price_median'])) /
                              (np.max(data['brand_price_median']) - np.min(data['brand_price_median'])))
data['brand_price_min'] = ((data['brand_price_min'] - np.min(data['brand_price_min'])) / 
                           (np.max(data['brand_price_min']) - np.min(data['brand_price_min'])))
data['brand_price_std'] = ((data['brand_price_std'] - np.min(data['brand_price_std'])) / 
                           (np.max(data['brand_price_std']) - np.min(data['brand_price_std'])))
data['brand_price_sum'] = ((data['brand_price_sum'] - np.min(data['brand_price_sum'])) / 
                           (np.max(data['brand_price_sum']) - np.min(data['brand_price_sum'])))
# 对类别特征进行 OneEncoder
data = pd.get_dummies(data, columns=['model', 'brand', 'bodyType', 'fuelType',
                                     'gearbox', 'notRepairedDamage', 'power_bin'])
print(data.shape)
data.columns
(199037, 369)





Index(['SaleID', 'name', 'power', 'kilometer', 'seller', 'offerType', 'price',
       'v_0', 'v_1', 'v_2',
       ...
       'power_bin_20.0', 'power_bin_21.0', 'power_bin_22.0', 'power_bin_23.0',
       'power_bin_24.0', 'power_bin_25.0', 'power_bin_26.0', 'power_bin_27.0',
       'power_bin_28.0', 'power_bin_29.0'],
      dtype='object', length=369)
# 这份数据可以给 LR 用
data.to_csv('/home/ricardo/dw/data_for_lr.csv', index=0)

特征筛选

过滤式

选择与目标变量相关性较强的特征。缺点:忽略了特征之间的关联性。

# 相关性分析
print(data['power'].corr(data['price'], method='spearman'))
print(data['kilometer'].corr(data['price'], method='spearman'))
print(data['brand_amount'].corr(data['price'], method='spearman'))
print(data['brand_price_average'].corr(data['price'], method='spearman'))
print(data['brand_price_max'].corr(data['price'], method='spearman'))
print(data['brand_price_median'].corr(data['price'], method='spearman'))

"""
DataFrame.corr(method='pearson', min_periods=1)相关系数
"""

0.5728285196051496
-0.4082569701616764
0.058156610025581514
0.3834909576057687
0.259066833880992
0.38691042393409447
# 当然也可以直接看图
data_numeric = data[['power', 'kilometer', 'brand_amount', 'brand_price_average', 
                     'brand_price_max', 'brand_price_median']]
correlation = data_numeric.corr()

f , ax = plt.subplots(figsize = (7, 7))
plt.title('Correlation of Numeric Features with Price',y=1,size=16)
sns.heatmap(correlation,square = True,  vmax=0.8)
<matplotlib.axes._subplots.AxesSubplot at 0x7f507408a990>

在这里插入图片描述

包裹式

基于线性模型相关系数以及模型结果AUC逐步剔除特征。如果剔除相关系数绝对值较小特征后,AUC无大的变化,或降低,则可剔除

# k_feature 太大会很难跑,没服务器,所以提前 interrupt 了
from mlxtend.feature_selection import SequentialFeatureSelector as SFS
from sklearn.linear_model import LinearRegression
sfs = SFS(LinearRegression(),
           k_features=10,
           forward=True,
           floating=False,
           scoring = 'r2',
           cv = 0)
x = data.drop(['price'], axis=1)
print(x)
x = x.fillna(0)

y = data['price']
sfs.fit(x, y)
sfs.k_feature_names_ 

顺序特征选择算法是一系列贪婪搜索算法,用于将初始d维特征空间缩小为k <d个k维特征子空间。特征选择算法的动机是自动选择与问题最相关的特征子集。特征选择的目的有两个:我们要通过去除不相关的特征或噪声来提高计算效率并减少模型的泛化误差。如果嵌入式特征选择(例如像LASSO这样的正则化惩罚)不适用,则诸如顺序特征选择之类的包装方法尤其有用。

简而言之,SFA会根据分类器的性能同时删除或添加一个特征,直到达到所需大小k的特征子集为止。

嵌入式

Lasso 回归和决策树可以完成嵌入式特征选择

大部分情况下都是用嵌入式做特征筛选

嵌入式特征选择在学习器训练过程中自动地进行特征选择

1.5

特征工程是比赛中最至关重要的的一块,特别的传统的比赛,大家的模型可能都差不多,调参带来的效果增幅是非常有限的,但特征工程的好坏往往会决定了最终的排名和成绩。

特征工程的主要目的还是在于将数据转换为能更好地表示潜在问题的特征,从而提高机器学习的性能。比如,异常值处理是为了去除噪声,填补缺失值可以加入先验知识等。

特征构造也属于特征工程的一部分,其目的是为了增强数据的表达。

有些比赛的特征是匿名特征,这导致我们并不清楚特征相互直接的关联性,这时我们就只有单纯基于特征进行处理,比如装箱,groupby,agg 等这样一些操作进行一些特征统计,此外还可以对特征进行进一步的 log,exp 等变换,或者对多个特征进行四则运算(如上面我们算出的使用时长),多项式组合等然后进行筛选。由于特性的匿名性其实限制了很多对于特征的处理,当然有些时候用 NN 去提取一些特征也会达到意想不到的良好效果。

对于知道特征含义(非匿名)的特征工程,特别是在工业类型比赛中,会基于信号处理,频域提取,丰度,偏度等构建更为有实际意义的特征,这就是结合背景的特征构建,在推荐系统中也是这样的,各种类型点击率统计,各时段统计,加用户属性的统计等等,这样一种特征构建往往要深入分析背后的业务逻辑或者说物理原理,从而才能更好的找到 magic。

当然特征工程其实是和模型结合在一起的,这就是为什么要为 LR NN 做分桶和特征归一化的原因,而对于特征的处理效果和特征重要性等往往要通过模型来验证。

总的来说,特征工程是一个入门简单,但想精通非常难的一件事。

以上大部分内容来自:

— By: 阿泽

PS:复旦大学计算机研究生
知乎:阿泽 https://www.zhihu.com/people/is-aze(主要面向初学者的知识整理)
关于Datawhale:

Datawhale是一个专注于数据科学与AI领域的开源组织,汇集了众多领域院校和知名企业的优秀学习者,聚合了一群有开源精神和探索精神的团队成员。Datawhale 以“for the learner,和学习者一起成长”为愿景,鼓励真实地展现自我、开放包容、互信互助、敢于试错和勇于担当。同时 Datawhale 用开源的理念去探索开源内容、开源学习和开源方案,赋能人才培养,助力人才成长,建立起人与人,人与知识,人与企业和人与未来的联结。

在基础上做一些扩充和理解

发布了13 篇原创文章 · 获赞 3 · 访问量 4059
App 阅读领勋章
微信扫码 下载APP
阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 数字20 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览