River_J777
码龄5年
关注
提问 私信
  • 博客:69,265
    69,265
    总访问量
  • 43
    原创
  • 1,630,389
    排名
  • 139
    粉丝
  • 1
    铁粉

个人简介:小白白白白

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2020-04-02
博客简介:

River_J777的博客

查看详细资料
个人成就
  • 获得101次点赞
  • 内容获得36次评论
  • 获得578次收藏
  • 代码片获得290次分享
创作历程
  • 1篇
    2022年
  • 7篇
    2021年
  • 36篇
    2020年
成就勋章
TA的专栏
  • 学习
    1篇
  • 数学基础概念
    7篇
  • Zero-Shot Learning
    12篇
  • 机器学习
    15篇
  • 最优化理论与算法
    7篇
兴趣领域 设置
  • 用户体验设计
    photoshop
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Deepfake idea

Deepfake ideaMotivationSemantic informationDataLoss functionsModelMotivation考虑语义信息,在弱监督信息中尽可能挖掘有效信息;一种更贴近实际的实验设定;在更为精确的数据集上时(标注成本较高,比如为CUB200种鸟类标注,需要很高的专业知识水平,此时应用CLL),反标记监督信息更为有用:e.g. 鸟类识别任务:给定一张鸟类图片:1.被告知不是汽车,2.被告知不是麻雀。显然2的信息更有用,更符合CLL问题初衷。Semant
原创
发布博客 2022.05.23 ·
377 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

复分析(一)

复数Euler公式:eiπ+1=0e^{i\pi}+1=0eiπ+1=0复数的计算加减:乘除:模乘除 角加减幂:zn=rn(cosnθ+isinnθ)z^n=r^n(cosn\theta+isinn\theta)zn=rn(cosnθ+isinnθ)开方:z1n=r1n(cosθ+2kπn+isinθ+2kπn),k=0,1,⋯ ,n−1z^{\frac{1}{n}}=r^{\frac{1}{n}}(cos\frac{\theta+2k\pi}{n}+isin\frac{\theta+2k\p
原创
发布博客 2021.08.02 ·
441 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

公共基础考试题目

试卷一分析一、求二、设复变函数f(z)f(z)f(z)为整函数,且存在正整数nnn以及常数R>0,M>0R>0,M>0R>0,M>0,使得当∣z∣>R|z|>R∣z∣>R时,有∣f(z)∣≤M∣z∣n|f(z)|\leq M|z|^n∣f(z)∣≤M∣z∣n.试证明: f(z)f(z)f(z)是一个至多nnn次的多项式或一常数.三、陈述Lebesgue控制收敛定理并证明四、陈述开映射定理并证明:设∥⋅∥1\|\cdot\|_1∥⋅∥1​和∥
原创
发布博客 2021.07.20 ·
402 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

Zero-shot Learning零样本学习 论文阅读(九)——Semantic Projection Network for Zero- and Few-Label

Zero-shot Learning零样本学习 论文阅读(九)——Semantic Projection Network for Zero- and Few-Label算法模型算法思路视觉语义嵌入语义投影这篇CVPR2019的论文提出的模型SPNet主要解决了零标签语义分割ZLSS和少标签语义分割FLSS。算法模型算法思路整个模型一共分为两个部分,视觉语义嵌入和语义映射。首先,学习一个视觉语义嵌入模块,在词嵌入空间中生成中间特征映射。其次,通过一个固定词嵌入投影矩阵将这些特征映射投影到类概率中。在测
原创
发布博客 2021.02.11 ·
594 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

Zero-shot Learning零样本学习 论文阅读(八)——Zero-Shot Semantic Segmentation

Zero-shot Learning零样本学习 论文阅读(八)——Zero-Shot Semantic Segmentation算法模型算法思路算法流程这是一篇关于基于生成方式的零样本语义分割的论文。算法模型算法思路Zero-shot learning解决了训练实例集并非包含所有类别的识别问题。通过使用类别的高级描述,可以使新类别(unseen classes)与可以使用训练实例的类别(seen classes)相关联来实现这一点,通常利用中间表示形式即有关类别信息的语义信息来完成学习。将语义信息
原创
发布博客 2021.02.09 ·
987 阅读 ·
1 点赞 ·
0 评论 ·
8 收藏

Zero-shot Learning零样本学习 论文阅读(七)——Unsupervised Domain Adaptation for Zero-Shot Learning

Zero-shot Learning零样本学习 论文阅读(七)——Unsupervised Domain Adaptation for Zero-Shot Learning背景字典稀疏学习算法模型算法思路设定算法原理这篇论文运用了一个unsupervised domain adaptation的技巧结合正则化字典稀疏学习,主要解决zero-shot learning中的domain shift问题。背景字典稀疏学习稀疏表示假如我们用矩阵X={x1,x2,⋯ ,xn}∈Rd×nX=\{x_1,x_
原创
发布博客 2021.01.12 ·
670 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

Zero-shot Learning零样本学习 论文阅读(六)——Feature Generating Networks for Zero-Shot Learning

Zero-shot Learning零样本学习 论文阅读(六)——Feature Generating Networks for Zero-Shot Learning背景生成对抗网络GAN算法模型思路模型这篇CVPR 2018年发表的论文提出用对抗生成网络GAN来在特征空间生成数据的思想来解决zero-shot learning的问题。背景生成对抗网络GAN生成对抗网络GAN是源自博弈论中的零和博弈,由两部分组成,分别是生成模型G(generative model)和判别模型(discriminat
原创
发布博客 2021.01.08 ·
585 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

Zero-shot Learning零样本学习 论文阅读(五)——DeViSE:A Deep Visual-Semantic Embedding Model

Zero-shot Learning零样本学习 论文阅读(五)——DeViSE:A Deep Visual-Semantic Embedding Model背景Skip-gram算法算法思路原理这篇2013年的文章提出了DeViSE这种方法,主要是综合了传统视觉识别的神经网络和词向量处理(word2vec)中的skip-gram模型,实现了一个视觉和语义兼顾的ZSL模型,取得了较好的效果,时至今日准确率仍然可以排在前面。背景Skip-gramSkip-gram是Word2Vec模型中的一种,给定一个
原创
发布博客 2021.01.05 ·
1160 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

Zero-Shot Learning零样本学习 学习进展汇总

Zero-Shot Learning零样本学习 学习进展汇总基本概念什么是zero-shot learning?基本概念定义语义空间(Semantic Spaces)工程语义空间(Engineered Semantic Spaces)学习语义空间(Learned Semantic Spaces)最大后验概率论文阅读(一)DAP&IAP算法概要前提目标思路具体原理DAP(Directed attribute prediction)IAP(Indirected attribute prediction)
原创
发布博客 2020.12.31 ·
1218 阅读 ·
3 点赞 ·
0 评论 ·
26 收藏

Zero-shot Learning零样本学习 论文阅读(四)——Zero-Shot Recognition using Dual Visual-Semantic Mapping Paths

Zero-shot Learning零样本学习 论文阅读(四)——Zero-Shot Recognition using Dual Visual-Semantic Mapping Paths背景流形学习语义间隔(semantic gap)算法原理算法思路符号设定算法流程这篇2017年的论文提供了解决semantic gap问题的简单做法,所谓的semantic gap也就是从图片中提取的低层特征到高层语义之间存在的“语义鸿沟”问题。这与上一篇论文提到的领域漂移问题都是zero-shot learning技
原创
发布博客 2020.12.31 ·
956 阅读 ·
2 点赞 ·
1 评论 ·
2 收藏

Zero-shot Learning零样本学习 论文阅读(三)——Semantic Autoencoder for Zero-Shot Learning

江浩然 \quad \quad \quad \quad \quad 统计1701班 \quad \quad \quad \quad \quad 201714020111
原创
发布博客 2020.12.27 ·
1263 阅读 ·
0 点赞 ·
0 评论 ·
9 收藏

Zero-shot Learning零样本学习 论文阅读(二)——An embarrassingly simple approach to zero-shot learning

Zero-shot Learning零样本学习 论文阅读(二)——An embarrassingly simple approach to zero-shot learningESZSL算法概况背景前提思路算法原理模型求解损失函数LLL正则化项Ω\OmegaΩ参考文献这篇论文提出了一种新的zero-shot learning方法“Embarrassingly simple Zero-Shot Learning”,后来被简写作EsZSL。之所以叫做“embarrassingly simple”,是因为这种新
原创
发布博客 2020.12.25 ·
1667 阅读 ·
3 点赞 ·
0 评论 ·
8 收藏

机器学习 小白Python学习笔记(一) ———— 第一章 绪论 & 第二章 模型评估与选择

机器学习 小白Python学习笔记(一)——第一章 绪论 & 第二章 模型评估与选择写在最前第一章 绪论 & 第二章 模型评估与选择写在最前博主是统计专业本科在读,之前利用一个学期的时间粗略地学习机器学习一遍,了解了书中知识理论的基本情况。准备申请机器学习相关专业的研究生,无奈第一遍的学习太过于浮于表面,于是决定回锅学习第二遍!这一遍的重点将放在对算法流程的理解与Python的实现,希望通过这一遍的学习之后,能够独立搭建起相关算法的框架。概括地说,就是一个小白学习Python实现机器
原创
发布博客 2020.12.22 ·
475 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Zero-shot Learning零样本学习 论文阅读(一)——Learning to detect unseen object classes by between-class attribute

Zero-shot Learning零样本学习 论文阅读(一)——Learning to detect unseen object classes by between-class attribute transfer算法概要前提目标思路DAPLearning to detect unseen object classes by between-class attribute这篇文章首次提出了Zero-shot Learning这一问题的概念,并给出了基于物体属性的解决方法。算法概要前提(x1,l1
原创
发布博客 2020.12.22 ·
1010 阅读 ·
2 点赞 ·
1 评论 ·
8 收藏

最大后验估计MAP

最大后验估计MAP是最常用的几个参数点估计之一,基本原理由贝叶斯定理而来,先看贝叶斯公式:P(θ∣x)=P(x∣θ)P(θ)P(x)P\left(\theta \mid \boldsymbol x\right)=\frac{P\left(\boldsymbol x \mid \theta\right) P\left(\theta\right)}{P(\boldsymbol x)}P(θ∣x)=P(x)P(x∣θ)P(θ)​其中,我们将P(θ)P\left(\theta\right)P(θ)称为先验概
原创
发布博客 2020.12.21 ·
592 阅读 ·
2 点赞 ·
0 评论 ·
7 收藏

Zero-Shot Learning零样本学习 入门 基本概念

这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Mar
原创
发布博客 2020.12.19 ·
1784 阅读 ·
6 点赞 ·
5 评论 ·
20 收藏

STK-SNAP的基本使用指南 —— 标注

https://blog.csdn.net/qianshuqinghan/article/details/104716602
转载
发布博客 2020.10.20 ·
487 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Dicom文件(.IMA)批量转化为NIFTI(.nii)文件

@toc动机因为NIFTI的文件是三维的图像,而DICOM的文件为二维的多张图像,所以相对于DICOM文件,NIFTI文件训练的张数更少、更加易用于机器学习。文件概况我的文件大概是图中的样子,在xuezhong文件夹中有一些子文件夹,……,储存着一些.IMA文件(.IMA文件其实就是Dicom文件的一种,可以直接按照Dicom文件进行操作)。步骤第一步:我们首先要获取存储影像图片的所有文件夹的路径;第二步:将文件夹内的影像转化为.nii格式.具体操作第一步我们首先利用os.list
原创
发布博客 2020.10.20 ·
7065 阅读 ·
5 点赞 ·
6 评论 ·
51 收藏

stk-snap基本使用方法(一) ——下载安装&读取文件与标注

stk-snap基本使用方法下载安装使用打开文件读取标注文件下载安装首先在官网http://www.itksnap.org/pmwiki/pmwiki.php?n=Downloads.SNAP3进行下载,选择合适的版本下载并进行安装。使用打开文件进入软件的界面后,点击 File ,选择 Open Main Image. (也可以直接将文件拖入软件界面)选择文件,可读取的格式有.dcm、.nii、.mha、.gipl等等.读取好之后的界面:读取标注文件如果我们已有之前做的标注文件,比如
原创
发布博客 2020.10.20 ·
1208 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

交叉验证——ESL chapter7.10

交叉验证交叉验证是估计预测误差最简单且广泛使用的方法。通常情况下,我们的数据量都是不足够多的,如果在本来就不多的数据集中再划分出一部分作为验证集,那可供学习的数据就更少了。为了解决这一问题,K-折交叉验证将数据集分成容量大致相等的K个部分,如下图:对于第kkk(k=1,2,⋯ ,Kk=1,2,\cdots,Kk=1,2,⋯,K)部分,我们首先用 其他K-1个部分的数据对学习器进行训练,再预测第kkk部分数据时计算预测误差。依次通过k=1,2,⋯ ,Kk=1,2,\cdots,Kk=1,2,⋯,K循
原创
发布博客 2020.10.15 ·
811 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏
加载更多