P2765 魔术球问题

版权声明:本文章的作者才疏学浅,有错误或疏漏是在所难免的,希望读者能帮助发现错误并提出建议。 https://blog.csdn.net/Rlt1296/article/details/70236469

题目描述

«问题描述:

假设有n根柱子,现要按下述规则在这n根柱子中依次放入编号为1,2,3,...的球。

(1)每次只能在某根柱子的最上面放球。

(2)在同一根柱子中,任何2个相邻球的编号之和为完全平方数。

试设计一个算法,计算出在n根柱子上最多能放多少个球。例如,在4 根柱子上最多可放11 个球。

«编程任务:

对于给定的n,计算在n根柱子上最多能放多少个球。

输入输出格式

输入格式:

第1 行有1个正整数n,表示柱子数。

输出格式:

程序运行结束时,将n 根柱子上最多能放的球数以及相应的放置方案输出。文件的第一行是球数。接下来的n行,每行是一根柱子上的球的编号。

输入输出样例

输入样例#1:
4
输出样例#1:
11
1 8
2 7 9
3 6 10
4 5 11

说明

感谢 @PhoenixEclipse 提供spj






首先,如果确定球数,一定可以确定最少的柱子数,想到二分。

具体说就是在和为完全平方数的两个数之间连边,求最小路径覆盖。


#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<cmath>
using namespace std;
const int N=1605;
const int inf=1e9+7;
int s,t,n,cnt,hd[2*N],pre[2*N],nxt[2*N];
queue<int>q;
struct edge
{
	int to,nxt,f;
}v[2*N*N+4*N];
void addedge(int x,int y,int z)
{
	v[++cnt].to=y;
	v[cnt].f=z;
	v[cnt].nxt=hd[x];
	hd[x]=cnt;
}
bool bfs()
{
	memset(pre,0,sizeof(pre));
	pre[s]=1;
	q.push(s);
	while(!q.empty())
	{
		int u=q.front();
		q.pop();
		for(int i=hd[u];i;i=v[i].nxt)
			if(v[i].f&&!pre[v[i].to])
			{
				pre[v[i].to]=pre[u]+1;
				q.push(v[i].to);
			}
	}
	return pre[t];
}
int dfs(int u,int lft)
{
	if(u==t||lft==0)
		return lft;
	int r=lft;
	for(int i=hd[u];i;i=v[i].nxt)
		if(r&&v[i].f&&pre[v[i].to]==pre[u]+1)
		{
			int w=dfs(v[i].to,min(r,v[i].f));
			if(w)
			{
				v[i].f-=w,v[i^1].f+=w,r-=w;
				nxt[u]=v[i].to;
			}
			if(!r)
				return lft;
		}
	if(lft==r)
		pre[u]=0;
	return lft-r;
}
int solve(int lim)
{
	s=0,t=2*lim+1;
	cnt=0;
	memset(hd,0,sizeof(hd));
	memset(nxt,0,sizeof(nxt));
	for(int i=1;i<=lim;i++)
		for(int j=i+1;j<=lim;j++)
		{
			int x=sqrt(i+j);
			if(x*x==i+j)
				addedge(i,j+lim,1),addedge(j+lim,i,0);
		}
	for(int i=1;i<=lim;i++)
	{
		addedge(s,i,1),addedge(i,s,0);
		addedge(i+lim,t,1),addedge(t,i+lim,0);
	}
	int res=0;
	while(bfs())
		res+=dfs(s,inf);
	return lim-res;
}
int main()
{
	scanf("%d",&n);
	int l=1,r=1600,mid;
	while(l<r)
	{
		mid=(l+r)/2;
		if(n<solve(mid))
			r=mid;
		else
			l=mid+1;
	}
	printf("%d\n",l-1);
	solve(l-1);
	for(int i=1;i<=l-1;i++)
		if(nxt[i])
		{
			int c=i;
			while(c)
			{
				if(c>=l-1)
					c-=l-1;
				printf("%d ",c);
				int x=nxt[c];
				nxt[c]=0;
				c=x;
			}
			printf("\n");
		}
	return 0;
}


阅读更多
换一批

没有更多推荐了,返回首页