LDA(学习笔记)

在前面PCA的基础之上继续学习LDA

linear discriminant analysis 线性判别分析

一种用于高维数据降维的方法

不同于PCA的地方:PCA是一种无监督的降维技术,模型输出不考虑样本类别,仅仅做到了降维便达到目的;LDA针对的样本都是带有标签的,即类别,是一种有监督的降维方法。

LDA的主体思想:在向低维度空间投影后,类内的方差达到最小,类间方差达到最大。

右图和左图相比较而言,不同种类的数据投影到直线后更加聚拢,并且两种数据的分布中心也彼此更加原理。这就是LDA的目的所在。

然后就是瑞利商的概念:https://en.wikipedia.org/wiki/Rayleigh_quotient 

可以直接参考维基上面的说明,很详细。

接下来就是LDA的具体原理:这里直接参考博文https://www.cnblogs.com/pinard/p/6244265.html 

写的比较详细,另外还可以参见维基百科https://en.wikipedia.org/wiki/Linear_discriminant_analysis

(ps:习惯多读英文资料以及文档!!百利无一害~~~~!)

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页