自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1)
  • 收藏
  • 关注

原创 主成分分析(学习笔记)

主成分分析:principal component analysis (PCA)由卡尔皮尔逊于1901年提出,是一种分析,简化数据的技术,主要用于降低数据的维数,并且在这个过程中,保持数据集中的对方差贡献最大的特征。具体怎样做呢?对数据集的协方差矩阵进行特征分解,得到数据集的主成分(特征向量)和相对应的权值(特征值)。我们要在降低数据维数的过程中,使数据集的信息丢失尽可能的小,这等价于在原数据集中...

2018-07-13 19:33:14 377

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除