解线性同余方程模板

拓展欧几里得求特解

int exgcd(int a, int b, int &x, int &y) {         //x,y初始为任意值,最后变为一组特解
    if(b == 0) {        //对应最终情况,a=gcd(a,b),b=0,此时x=1,y为任意数
        x = 1;
        y = 0;
        return a;
    }
    int r = exgcd(b, a % b, x, y);      //先递归到最终情况,再反推出初始情况
    int t = x; x = y; y = t - a / b * y;
    return r;     //gcd(a,b)
}

通过拓展欧几里得求解线性同余方程

void RemainderEquation(int a,int b,int n)
{
    int X,Y,d;
    long long res;
    long long min_res;
    d=gcd(a,n);
    exgcd(a,n,X,Y);
    if(b%d == 0)
    {
        X = X * (b / d) % n;//得到方程一解
        for(int i = 0 ; i < d; i++)
        {
            res = (X + (i * (b/d))) % n;
            printf("%lld\n",res);             //输出所有解
        }
        min_res=(X%(n/d)+(n/d))%(n/d);    
        cout<<min_res<<endl;       //输出最小解
    }else
    {
        printf("No Sulutions!\n");
    }
}

中国剩余定理求解线性同余方程组

常规中国剩余定理:各m互质时

int CRT(int a[], int m[], int n) {
    int M = 1;
    int ans = 0;
    for(int i = 1; i <= n; i++) {
        M *= m[i];
    }
    for(int i = 1; i <= n; i++) {
        int x, y;
        int Mi = M / m[i];
        exgcd(Mi, m[i], x, y);
        ans = (ans + Mi * x * a[i]) % M;
    }
    if(ans < 0) ans += M;
    return ans;
}

扩展中国剩余定理:各m不互质

#include<iostream>
#include<cstdio>
#include<climits>
#include<cstring>
#include<algorithm>
using namespace std;
#define LL long long
const int maxn=1e5+5;
int n;
LL exgcd(LL a,LL b,LL &x,LL &y){
    if(!b){x=1,y=0;return a;}
    LL re=exgcd(b,a%b,x,y),tmp=x;
    x=y,y=tmp-(a/b)*y;
    return re;
}
LL m[maxn],a[maxn];      //m为模数集,a为余数集
LL exCRT(){
    LL M=m[1],A=a[1],t,d,x,y;int i;
    for(i=2;i<=n;i++){
        d=exgcd(M,m[i],x,y);//解方程
        if((a[i]-A)%d)return -1;//无解
        x*=(a[i]-A)/d,t=m[i]/d,x=(x%t+t)%t;//求x
        A=M*x+A,M=M/d*m[i],A%=M;//日常膜一膜(划掉)模一模,防止爆
    }
    A=(A%M+M)%M;
    return A;
}
int main()
{
    int i,j;
    while(scanf("%d",&n)!=EOF){
        for(i=1;i<=n;i++)scanf("%lld%lld",&m[i],&a[i]);
        printf("%lld\n",exCRT());
    }
    return 0;
}

求逆元

1.扩展欧几里得:ax≡1(mod n)可以等价的转化为ax−ny=1,利用exgcd解方程,并判断gcd(a,n)是否等于1
若等于1,将x调整到1~n-1即可,O(logn)
2.费马小定理:由a^(p−1)≡1(mod p)得a*a^(p−2)≡1(mod p)
所以当模数是一个质数的时候,可以用费马小定理求解,即inv(i)=i^(p−2)(mod p) O(logn)
3.欧拉定理: 由a^φ( p) ≡1(mod p)得a^ (φ( p)−1)是a的逆元
适用于模数不是素数

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define LL long long
int inv[1000010];

LL ksm(LL a,LL b,LL mod)      //费马小定理
{
    int ans=1;
    while(b)
    {
        if(b&1) ans=(ans*a)%mod;
        a=(a*a)%mod;
        b>>=1;
    }
    return ans;
}

LL exgcd(LL a,LL b,LL &x,LL &y)   //扩展欧几里得
{
    if(!b)
    {
        x=1;
        y=0;
        return a;
    }
    LL GCD=exgcd(b,a%b,x,y);
    LL tmp=x;
    x=y;
    y=tmp-a/b*y;
    return GCD;
}

LL inv1(LL a,LL mod)	//扩展欧几里得求逆元
{
    LL x,y;
    LL d=exgcd(a,mod,x,y);
    if(d==1) return (x%mod+mod)%mod;
    return -1;
}

LL inv2(LL a,LL mod)	//费马小定理求逆元 
{
    return ksm(a,mod-2,mod);
}

void inv3(LL mod)	//线性递推求1~n的所有逆元
{
    inv[1]=1;
    for(int i=2;i<=mod-1;i++)
    {
        inv[i]=(mod-mod/i)*inv[mod%i]%mod;
        cout<<inv[i]<<" ";
    }
}

int main()
{
    LL n,mod;
    while(cin>>n>>mod)
    {
        cout<<inv1(n,mod)<<" "<<inv2(n,mod)<<endl;
        inv3(mod);
    }
}

转自:https://blog.csdn.net/weixin_43093481/article/details/82229718

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值