# MTL 矩阵逆阵 解线性方程

/* thanks to Valient Gough for this example program! */

//整理 by RobinKin

#include <mtl/matrix.h>
#include <mtl/mtl.h>
#include <mtl/utils.h>
#include <mtl/lu.h>

using namespace mtl;

// don't print out the matrices once they get to this size...
#define MAX_PRINT_SIZE 5

typedef matrix<double, rectangle<>, dense<>, row_major>::type Matrix;
typedef dense1D<double> Vector;

double testMatrixError(const Matrix &A, const Matrix &AInv)
{
int size = A.nrows();

// test it
Matrix AInvA(size,size);

// AInvA = AInv * A
mult(AInv, A, AInvA);

// I = identity
typedef matrix<double, diagonal<>, packed<>, row_major>::type IdentMat;
IdentMat I(size, size, 0, 0);
mtl::set_value(I, 1.0);

// AInvA += -I

if (size < MAX_PRINT_SIZE) {
std::cout << "Ainv * A - I = " << std::endl;
print_all_matrix(AInvA);
}

// find max error
double max_error = 0.0;
for(Matrix::iterator i = AInvA.begin(); i != AInvA.end(); ++i)
for(Matrix::Row::iterator j = (*i).begin(); j != (*i).end(); ++j)
if(fabs(*j) > fabs(max_error))
max_error = *j;

std::cout << "max error = " << max_error << std::endl;

return max_error;
}

void testLUSoln(const Matrix &A, const Vector &b, Vector &x)
{
// create LU decomposition
Matrix LU(A.nrows(), A.ncols());
dense1D<int> pvector(A.nrows());

copy(A, LU);
lu_factorize(LU, pvector);

// solve
//解线形方程
lu_solve(LU, pvector, b, x);
}

void testLUInv(const Matrix &A, int size)
{
// invert it
Matrix AInv(size,size);

// create LU decomposition
Matrix LU(A.nrows(), A.ncols());
dense1D<int> pvector(A.nrows());

copy(A, LU);
lu_factor(LU, pvector);

//求逆阵
// solve
lu_inverse(LU, pvector, AInv);

if(size < MAX_PRINT_SIZE) {
std::cout << "Ainv = " << std::endl;
print_all_matrix(AInv);
}

// test it
testMatrixError(A, AInv);

}

int main(int argc, char **argv)
{
typedef Matrix::size_type sizeT;

sizeT size = 3;

if(argc > 1)
size = atoi(argv[1]);

std::cout << "inverting matrix of size " << size << std::endl;

// create a random matrix and invert it.  Then see how close it comes to
// identity.

Matrix A(size,size);
Vector b(size);
Vector x(size);

// initialize
for (sizeT i=0; i<A.nrows(); i++) {
for (sizeT j=0; j<A.nrows(); j++)
A(i,j) = (double)(rand() % 200 - 100) / 50.0;
b[i] = (double)(rand() % 200 - 100) / 50.0;
}

if (size < MAX_PRINT_SIZE) {
std::cout << "A = " << std::endl;
print_all_matrix(A);
}

// time LU inv
std::cout << std::endl
<< " ----------- testing inversion using LU decomposition"
<< std::endl;
testLUInv(A, size);

if (size < MAX_PRINT_SIZE) {
std::cout << "solution = ";
print_vector(x);
}

// test LU solution
mtl::set_value(x, 0.0);
testLUSoln(A, b, x);

if(size < MAX_PRINT_SIZE) {
std::cout << "solution = ";
print_vector(x);
}

if(argc == 1)
std::cout << std::endl
<< "pass size argument to program to time larger matrices."
<< std::endl;

return 0;
}

inverting matrix of size 3
A =
3x3
[
[1.66,-0.28,1.54],
[1.86,0.7,1.72],
[-1.02,-1.58,1.24]
]

//逆阵

----------- testing inversion using LU decomposition
Ainv =
3x3
[
[0.978889,-0.56949,-0.42578],
[-1.10862,0.990792,0.00251165],
[-0.607383,0.79401,0.459414]
]
Ainv * A - I =
3x3
[
[4.44089e-16,2.56739e-16,1.01481e-16],
[-5.05491e-16,-2.22045e-16,-2.75514e-16],
[-1.91335e-16,-1.27014e-16,-1.11022e-16]
]
max error = -5.05491e-16
solution = [0,0,0,]
//方程的解向量
solution = [1.00642,-0.49478,-0.980001,]

12-01 628

01-04 1780

04-29 1.5万

03-29 453

05-14 1.1万

03-29 188

#### 求下三角矩阵的逆矩阵的详细算法

2012年05月21日 56KB 下载

10-25 420

05-03 6344

03-16 4169