Problem\mathrm{Problem}Problem
在游戏中,JYY一共有两种攻击方式,一种是普通攻击,一种是法术攻击。两种攻击方式都会消耗JYY一些体力。采用普通攻击进攻怪兽并不能把怪兽彻底杀死,怪兽的尸体可以变出其他一些新的怪兽,注意一个怪兽可能经过若干次普通攻击后变回一个或更多同样的怪兽;而采用法术攻击则可以彻底将一个怪兽杀死。
游戏世界中一共有NNN种不同的怪兽,分别由111到NNN编号,现在111号怪兽入侵村庄了,JYY想知道,最少花费多少体力值才能将所有村庄中的怪兽全部杀死呢?
Solution\mathrm{Solution}Solution
我们从DP的思想来考虑这道题,设fif_ifi为杀死怪兽iii的最小代价。
则我们可以列出一个很显然的状态转移方程:fi=min(Ki,Si+∑i→jfj)f_i=\min(K_i,S_i+\sum_{i→j} f_j)fi=min(K

本文介绍了如何使用SPFA算法优化动态规划(DP)来解决一个游戏问题,即寻找杀死所有怪兽所需的最小体力消耗。游戏中的怪兽有两种类型,普通攻击会产生更多怪兽,而法术攻击能直接杀死。通过状态转移方程和SPFA算法,可以计算出从1号怪兽开始消灭所有怪兽的最小代价。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



