【日常刷题】最长括号匹配DP

最长括号匹配

这道题目看似可以使用栈来做,实则用DP可以更加简单。
我们设 f [ i ] f[i] f[i]为以第i位结尾的可以匹配的最大长度。
对于每一个第 i i i位,如果需要存在合法序列必须满足两个条件
1.是左括号
2.必须和其有边的字符组成一个序列
事实上对于第一个条件我们只要简单的判断,而对于第二个条件就和我们的决策有关。
而对于转移方程f[i],只要当前的这个字符 s [ i ] s[i] s[i]和以 i + 1 i+1 i+1位起点构成串的有边匹配,就说明能够成立一个合法的串。如果列出转移方程,就是:
f [ i ] = f [ i + 1 ] + 2 , ( s [ i ] 属 于 左 括 号 , s [ i ] = s [ i + f [ i ] + 1 ] ) f[i]=f[i+1]+2,(s[i]属于左括号, s[i]=s[i+f[i]+1]) f[i]=f[i+1]+2,(s[i],s[i]=s[i+f[i]+1])
对于条件3,我们只要继续累加 f [ i + f [ i ] ] f[i+f[i]] f[i+f[i]]即可。

CODE

#include<bits/stdc++.h>
using namespace std;
#define MAXN 2000000

int MAX=0,st=0,f[MAXN];
char s[MAXN];; 

int main()
{
    cin>>s;
    int len=strlen(s);
    for (int i=len-1;i>=0;--i)
    {
        if (s[i]==')' || s[i]==']') continue;//右括号不合法
        if ((s[i]=='(' && s[i+f[i+1]+1]==')') || (s[i]=='[' && s[i+f[i+1]+1]==']'))//存在对顶的字符串 
        {
            f[i]=f[i+1]+2;//上一个决策加上新的收尾
            f[i]+=f[i+f[i]];//满足条件3,即多个不同的串进行累加 
            if (f[i]>=MAX) MAX=f[i],st=i;  
        } 
    }
    for (int i=0;i<MAX;i++) cout<<s[st+i];
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 使用动态规划解决最长括号匹配的代码如下:int lengthOfLongestValidParentheses(string s) { int n = s.length(), maxLen = 0; vector<int> dp(n, 0); for (int i = 1; i < n; i++) { if (s[i] == ')') { if (s[i - 1] == '(') { dp[i] = (i - 2 >= 0 ? dp[i - 2] : 0) + 2; } else if (i - dp[i - 1] - 1 >= 0 && s[i - dp[i - 1] - 1] == '(') { dp[i] = dp[i - 1] + 2 + ((i - dp[i - 1] - 2 >= 0) ? dp[i - dp[i - 1] - 2] : 0); } maxLen = max(maxLen, dp[i]); } } return maxLen; } ### 回答2: 以下是用动态规划算法求最长括号匹配的代码: ```python def longest_valid_parentheses(s: str) -> int: n = len(s) if n == 0: return 0 dp = [0] * n ans = 0 for i in range(1, n): if s[i] == ')': if s[i - 1] == '(': if i >= 2: dp[i] = dp[i - 2] + 2 else: dp[i] = 2 elif i - dp[i - 1] > 0 and s[i - dp[i - 1] - 1] == '(': if i - dp[i - 1] >= 2: dp[i] = dp[i - 1] + dp[i - dp[i - 1] - 2] + 2 else: dp[i] = dp[i - 1] + 2 ans = max(ans, dp[i]) return ans ``` 该算法使用动态规划来求解最长括号匹配。定义一个度为n的dp数组,其中dp[i]表示以下标为i的字符结尾的最长有效括号子串的度。遍历字符串s,当遇到'('时,不需要做任何计算;当遇到')'时,分为两种情况:如果前一个字符是'(',则dp[i] = dp[i-2] + 2;如果前一个字符是')',则需要判断前一个字符所对应的最长有效括号子串的前一个字符是否是'(',如果是,则dp[i] = dp[i-1] + dp[i-dp[i-1]-2] + 2。最后,取dp数组中的最大值即为最终的结果。算法的时间复杂度为O(n),空间复杂度为O(n)。 ### 回答3: 最长括号匹配可以使用动态规划算法来解决,具体代码如下: ```python def longestValidParentheses(s): n = len(s) if n < 2: return 0 dp = [0] * n # dp[i]表示以s[i]为结尾的最长括号度 max_length = 0 for i in range(1, n): if s[i] == ')': if s[i-1] == '(': # 形如 "()" 的匹配 dp[i] = dp[i-2] + 2 if i >= 2 else 2 elif i - dp[i-1] > 0 and s[i - dp[i-1] - 1] == '(': # 形如 "))" dp[i] = dp[i-1] + dp[i - dp[i-1] - 2] + 2 if i - dp[i-1] >= 2 else dp[i-1] + 2 max_length = max(max_length, dp[i]) return max_length ``` 原理解释: 动态规划的思路是从左到右遍历字符串,维护一个dp数组来记录以当前字符为结尾的最长括号度。 在遍历过程中,我们需要处理两种情况: 1. 形如 "()" 的匹配:如果当前字符是")",且前一个字符是"(",则可以形成一个有效的括号匹配,这时dp[i]的值可以由dp[i-2] + 2得到,也即前一个最长括号度再加上当前匹配的度2。 2. 形如 "))" - 如果当前字符是")",且前一个字符也是")",我们需要判断前一个最长括号匹配的前一个字符是否是"(",如果是,则可以形成一个有效的括号匹配,并且dp[i]的值可以由前一次最长括号dp[i-1]再加上到前一个有效括号匹配的前一个位置的最长括号dp[i - dp[i-1] - 2],再加上当前匹配的度2得到。此时需要特别注意边界情况,即当i - dp[i-1] < 2时,没有前一个有效的括号匹配,所以直接加上当前匹配的度2即可。 遍历结束后,返回dp数组的最大值,即为最长括号匹配度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值