【算法入门】动态规划·斜率优化:[HNOI2008]玩具装箱

本文介绍了动态规划在解决[HNOI2008]玩具装箱问题中的应用,通过斜率优化降低算法复杂度。讲解了如何将状态转移方程转化为一次函数,并利用单调队列进行优化,实现O(n)的时间复杂度。
摘要由CSDN通过智能技术生成

Description

P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。
  
他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。

P教授有编号为1…N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。

同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 。

制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。

P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.

Solution

如果考虑 O ( n 2 ) O(n^2) O(n2)的算法,设f[i]为前i件玩具压缩后形成的最小费用。

则根据分段的规则,对于每一个 f [ i ] f[i] f[i]枚举上一个分段的临街点j,可以得出状态转移方程:

f [ i ] = m i n ( f [ j ] + ( i − j − 1 + s u m [ i ] − s u m [ j ] − L ) 2 ) f[i]=min(f[j]+(i-j-1+sum[i]-sum[j]-L)^2) f[i]=min(f[j]+(ij1+sum[i]sum[j]L)2)

为了方便地求出区间和,我们使用前缀和,其中 s u m [ i ] = ∑ j = 1 i a [ j ] sum[i]=\sum_{j=1}^{i} a[j] sum[i]=j=1ia[j]

显然,这样的复杂度是不可取的,我们应该考虑对转移进行优化。

我们观察到方程较为复杂,需要考虑化简:

a ( i ) = i + s u m [ i ] , b ( i ) = i + s u m [ i ] + 1 + L a(i)=i+sum[i],b(i)=i+sum[i]+1+L a(i)=i+sum[i],b(i)=i

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值