Check if a digraph is a DAG (Directed Acyclic Graph) or not
Detect Cycle in a Directed Graph - GeeksforGeeks
Check if a digraph is a DAG (Directed Acyclic Graph) or not
Given a directed graph, check if it is a DAG (Directed Acyclic Graph) or not. A DAG is a digraph (directed graph) that contains no cycles.
The following graph contains a cycle 0—1—3—0
, so it’s not DAG. If we remove edge 3–0
from it, it will become a DAG.
Recommended Read:
We can use Depth–first search (DFS) to solve this problem. The idea is to find if any back-edge is present in the graph or not. A digraph is a DAG if there is no back-edge present in the graph. Recall that a back-edge is an edge from a vertex to one of its ancestors in the DFS tree.
Fact: For an edge u —> v
in a directed graph, an edge is a back edge if departure[u] < departure[v]
.
Proof: We have already discussed the relationship between all four types of edges involved in the DFS in the previous post. Following are the relationships we have seen between the departure time for different types of edges involved in a DFS of a directed graph:
Tree edge (u, v): departure[u] > departure[v]
Back edge (u, v): departure[u] < departure[v]
Forward edge (u, v): departure[u] > departure[v]
Cross edge (u, v): departure[u] > departure[v]
Note that for tree edge, forward edge and cross edge, departure[u] > departure[v]
. But only for the back edge, the relationship departure[u] < departure[v]
holds true. So, it is guaranteed that an edge (u, v)
is a back-edge, not some other edge if departure[u] < departure[v]
.
#include <iostream>
#include <vector>
using namespace std;
// Data structure to store a graph edge
struct Edge {
int src, dest;
};
// A class to represent a graph object
class Graph
{
public:
// a vector of vectors to represent an adjacency list
vector<vector<int>> adjList;
// Graph Constructor
Graph(vector<Edge> const &edges, int n)
{
// resize the vector to hold `n` elements of type `vector<int>`
adjList.resize(n);
// add edges to the directed graph
for (auto &edge: edges) {
adjList[edge.src].push_back(edge.dest);
}
}
};
// Perform DFS on the graph and set the departure time of all vertices of the graph
int DFS(Graph const &graph, int v, vector<bool>
&discovered, vector<int> &departure, int &time)
{
// mark the current node as discovered
discovered[v] = true;
// do for every edge (v, u)
for (int u: graph.adjList[v])
{
// if `u` is not yet discovered
if (!discovered[u]) {
DFS(graph, u, discovered, departure, time);
}
}
// ready to backtrack
// set departure time of vertex `v`
departure[v] = time++;
}
// Returns true if given directed graph is DAG
bool isDAG(Graph const &graph, int n)
{
// keep track of whether a vertex is discovered or not
vector<bool> discovered(n);
// keep track of the departure time of a vertex in DFS
vector<int> departure(n);
int time = 0;
// Perform DFS traversal from all undiscovered vertices
// to visit all connected components of a graph
for (int i = 0; i < n; i++)
{
if (!discovered[i]) {
DFS(graph, i, discovered, departure, time);
}
}
// check if the given directed graph is DAG or not
for (int u = 0; u < n; u++)
{
// check if (u, v) forms a back-edge.
for (int v: graph.adjList[u])
{
// If the departure time of vertex `v` is greater than equal
// to the departure time of `u`, they form a back edge.
// Note that departure[u] will be equal to
// departure[v] only if `u = v`, i.e., vertex
// contain an edge to itself
if (departure[u] <= departure[v]) {
return false;
}
}
}
// no back edges
return true;
}
int main()
{
// vector of graph edges as per the above diagram
vector<Edge> edges = {
{0, 1}, {0, 3}, {1, 2}, {1, 3}, {3, 2}, {3, 4}, {3, 0}, {5, 6}, {6, 3}
};
// total number of nodes in the graph (labelled from 0 to 6)
int n = 7;
// build a graph from the given edges
Graph graph(edges, n);
// check if the given directed graph is DAG or not
if (isDAG(graph, n)) {
cout << "The graph is a DAG";
}
else {
cout << "The graph is not a DAG";
}
return 0;
}
Output:
The graph is not a DAG
Java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
// A class to store a graph edge
class Edge
{
int source, dest;
public Edge(int source, int dest)
{
this.source = source;
this.dest = dest;
}
}
// A class to represent a graph object
class Graph
{
// A list of lists to represent an adjacency list
List<List<Integer>> adjList = null;
// Constructor
Graph(List<Edge> edges, int n)
{
adjList = new ArrayList<>();
for (int i = 0; i < n; i++) {
adjList.add(new ArrayList<>());
}
// add edges to the directed graph
for (Edge edge: edges) {
adjList.get(edge.source).add(edge.dest);
}
}
}
class Main
{
// Perform DFS on the graph and set the departure time of all
// vertices of the graph
private static int DFS(Graph graph, int v, boolean[] discovered,
int[] departure, int time)
{
// mark the current node as discovered
discovered[v] = true;
// do for every edge (v, u)
for (int u: graph.adjList.get(v))
{
// if `u` is not yet discovered
if (!discovered[u]) {
time = DFS(graph, u, discovered, departure, time);
}
}
// ready to backtrack
// set departure time of vertex `v`
departure[v] = time++;
return time;
}
// Returns true if given directed graph is DAG
public static boolean isDAG(Graph graph, int n)
{
// keep track of whether a vertex is discovered or not
boolean[] discovered = new boolean[n];
// keep track of the departure time of a vertex in DFS
int[] departure = new int[n];
int time = 0;
// Perform DFS traversal from all undiscovered vertices
// to visit all connected components of a graph
for (int i = 0; i < n; i++)
{
if (!discovered[i]) {
time = DFS(graph, i, discovered, departure, time);
}
}
// check if the given directed graph is DAG or not
for (int u = 0; u < n; u++)
{
// check if (u, v) forms a back-edge.
for (int v: graph.adjList.get(u))
{
// If the departure time of vertex `v` is greater than equal
// to the departure time of `u`, they form a back edge.
// Note that departure[u] will be equal to
// departure[v] only if `u = v`, i.e., vertex
// contain an edge to itself
if (departure[u] <= departure[v]) {
return false;
}
}
}
// no back edges
return true;
}
public static void main(String[] args)
{
// List of graph edges as per the above diagram
List<Edge> edges = Arrays.asList(
new Edge(0, 1), new Edge(0, 3), new Edge(1, 2),
new Edge(1, 3), new Edge(3, 2), new Edge(3, 4),
new Edge(3, 0), new Edge(5, 6), new Edge(6, 3)
);
// total number of nodes in the graph (labelled from 0 to 6)
int n = 7;
// build a graph from the given edges
Graph graph = new Graph(edges, n);
// check if the given directed graph is DAG or not
if (isDAG(graph, n)) {
System.out.println("The graph is a DAG");
}
else {
System.out.println("The graph is not a DAG");
}
}
}
|
Output:
The graph is not a DAG
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
|
# A class to represent a graph object
class Graph:
# Constructor
def __init__(self, edges, n):
# A list of lists to represent an adjacency list
self.adjList = [[] for _ in range(n)]
# add edges to the directed graph
for (src, dest) in edges:
self.adjList[src].append(dest)
# Perform DFS on the graph and set the departure time of all vertices of the graph
def DFS(graph, v, discovered, departure, time):
# mark the current node as discovered
discovered[v] = True
# do for every edge (v, u)
for u in graph.adjList[v]:
# if `u` is not yet discovered
if not discovered[u]:
time = DFS(graph, u, discovered, departure, time)
# ready to backtrack
# set departure time of vertex `v`
departure[v] = time
time = time + 1
return time
# Returns true if the given directed graph is DAG
def isDAG(graph, n):
# keep track of whether a vertex is discovered or not
discovered = [False] * n
# keep track of the departure time of a vertex in DFS
departure = [None] * n
time = 0
# Perform DFS traversal from all undiscovered vertices
# to visit all connected components of a graph
for i in range(n):
if not discovered[i]:
time = DFS(graph, i, discovered, departure, time)
# check if the given directed graph is DAG or not
for u in range(n):
# check if (u, v) forms a back-edge.
for v in graph.adjList[u]:
# If the departure time of vertex `v` is greater than equal
# to the departure time of `u`, they form a back edge.
# Note that `departure[u]` will be equal to `departure[v]`
# only if `u = v`, i.e., vertex contain an edge to itself
if departure[u] <= departure[v]:
return False
# no back edges
return True
if __name__ == '__main__':
# List of graph edges as per the above diagram
edges = [(0, 1), (0, 3), (1, 2), (1, 3), (3, 2), (3, 4), (3, 0), (5, 6), (6, 3)]
# total number of nodes in the graph (labelled from 0 to 6)
n = 7
# build a graph from the given edges
graph = Graph(edges, n)
# check if the given directed graph is DAG or not
if isDAG(graph, n):
print('The graph is a DAG')
else:
print('The graph is not a DAG')
|
Output:
The graph is not a DAG
The time complexity of the above solutions is O(V + E), where V
and E
are the total number of vertices and edges in the graph, respectively.
Rate this post