[bzoj4551][树链剖分]树

本文介绍了一道关于树的算法题目,通过使用树剖和线段树的方法来高效处理标记与查询操作。文章提供了完整的C++代码实现,详细展示了如何在树中进行预处理并构建线段树,以快速响应标记和查询请求。

Description

在2016年,佳媛姐姐刚刚学习了树,非常开心。现在他想解决这样一个问题:给定一颗有根树(根为1),有以下 两种操作:1.
标记操作:对某个结点打上标记(在最开始,只有结点1有标记,其他结点均无标记,而且对于某个 结点,可以打多次标记。)2.
询问操作:询问某个结点最近的一个打了标记的祖先(这个结点本身也算自己的祖 先)你能帮帮他吗?

Input

输入第一行两个正整数N和Q分别表示节点个数和操作次数接下来N-1行,每行两个正整数u,v(1≤u,v≤n)表示u到v
有一条有向边接下来Q行,形如“opernum”oper为“C”时表示这是一个标记操作,oper为“Q”时表示这是一个询
问操作对于每次询问操作,1 ≤ N, Q ≤ 100000。

Output

输出一个正整数,表示结果

Sample Input

5 5

1 2

1 3

2 4

2 5

Q 2

C 2

Q 2

Q 5

Q 3

Sample Output

1

2

2

1

题解

上树剖
线段树记录最深的打过标记的孩子编号
随便跑都能过吧。。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
struct node
{
    int x,y,next;
}a[110000];int len,last[110000];
void ins(int x,int y)
{
    len++;
    a[len].x=x;a[len].y=y;
    a[len].next=last[x];last[x]=len;
}
int fa[110000],dep[110000],tot[110000],son[110000];
int n,m;
void pre_tree_node(int x)
{
    son[x]=0;tot[x]=1;
    for(int k=last[x];k;k=a[k].next)
    {
        int y=a[k].y;
        if(y!=fa[x])
        {
            fa[y]=x;
            dep[y]=dep[x]+1;
            pre_tree_node(y);
            if(tot[son[x]]<tot[y])son[x]=y;
            tot[x]+=tot[y];
        }
    }
}
int ys[110000],z,top[110000],pre[110000];
void pre_tree_edge(int x,int tp)
{
    ys[x]=++z;pre[z]=x;top[x]=tp;
    if(son[x]!=0)pre_tree_edge(son[x],tp);
    for(int k=last[x];k;k=a[k].next)if(a[k].y!=fa[x] && a[k].y!=son[x])pre_tree_edge(a[k].y,a[k].y);
}
struct trnode
{
    int lc,rc,l,r,c;
}tr[210000];int trlen;
void bt(int l,int r)
{
    int now=++trlen;
    tr[now].l=l;tr[now].r=r;tr[now].c=-1;
    tr[now].lc=tr[now].rc=-1;
    if(l<r)
    {
        int mid=(l+r)/2;
        tr[now].lc=trlen+1;bt(l,mid);
        tr[now].rc=trlen+1;bt(mid+1,r);
    }
}
void change(int now,int p)
{
    if(tr[now].l==tr[now].r)
    {
        tr[now].c=pre[tr[now].l];
        return ;
    }
    int lc=tr[now].lc,rc=tr[now].rc;
    int mid=(tr[now].l+tr[now].r)/2;
    if(p<=mid)change(lc,p);
    else change(rc,p);
    if(tr[lc].c==-1 && tr[rc].c!=-1)tr[now].c=tr[rc].c;
    else if(tr[lc].c!=-1 && tr[rc].c==-1)tr[now].c=tr[lc].c;
    else if(tr[lc].c!=-1 && tr[rc].c!=-1)
    {
        if(dep[tr[lc].c]<dep[tr[rc].c])tr[now].c=tr[rc].c;
        else tr[now].c=tr[lc].c;
    }
}
int findsum(int now,int l,int r)
{
    if(tr[now].l==l && r==tr[now].r)return tr[now].c;
    int lc=tr[now].lc,rc=tr[now].rc;
    int mid=(tr[now].l+tr[now].r)/2;
    if(r<=mid)return findsum(lc,l,r);
    else if(mid+1<=l)return findsum(rc,l,r);
    else
    {
        int u=findsum(lc,l,mid),v=findsum(rc,mid+1,r);
        if(u==-1 && v!=-1)return v;
        else if(v==-1 && u!=-1)return u;
        else if(u!=-1 && v!=-1)
        {
            if(dep[u]>dep[v])return u;
            return v;
        }
        else return -1;
    }
}
int sol(int x,int y)
{
    int tx=top[x],ty=top[y];
    while(tx!=ty)
    {
        if(dep[tx]>dep[ty])swap(tx,ty),swap(x,y);
        int u=findsum(1,ys[ty],ys[y]);
        if(u!=-1)return u;
        y=fa[ty];ty=top[y];     
    }
    if(x==y)
    {
        int u=findsum(1,ys[y],ys[y]);
        return u;
    }
    else
    {
        if(dep[x]>dep[y])swap(x,y);
        int u=findsum(1,ys[x],ys[y]);
        return u;
    }
}
char ss[10];
int main()
{
    scanf("%d%d",&n,&m);
    len=0;memset(last,0,sizeof(last));
    for(int i=1;i<n;i++)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        ins(x,y);
    }
    fa[1]=0;dep[1]=1;
    pre_tree_node(1);
    z=0;pre_tree_edge(1,1);
    trlen=0;bt(1,z);
    change(1,ys[1]);
    while(m--)
    {
        int u;
        scanf("%s%d",ss+1,&u);
        if(ss[1]=='C')change(1,ys[u]);
        else printf("%d\n",sol(u,1));
    }
    return 0;
}
### 树链剖分的适用场景与使用方法 树链剖分是一种高效的数据结构,用于处理上的路径查询和修改问题。它通过将分解为若干条不相交的链来优化复杂度,使得许多原本需要 \(O(n)\) 时间的操作可以在 \(O(\log n)\) 时间内完成[^1]。 #### 1. 树链剖分的核心思想 树链剖分的核心在于将分割成若干条链,这些链可以拼接成上的任意路径。常见的树链剖分方法包括重链剖分和长链剖分。其中,重链剖分是最常用的一种方法,其基本原理是:对于每个节点,选择其所有子节点中包含节点数最多的子节点作为重儿子,连接重儿子的边称为重边,由重边构成的链称为重链[^2]。 #### 2. 树链剖分的适用场景 树链剖分适用于以下场景: - **路径查询**:例如,求解上两点之间的最大值、最小值或和等问题。 - **路径修改**:例如,对上某条路径上的所有节点进行加法或乘法操作。 - **子查询**:例如,求解某个节点的子中的最大值、最小值或和等问题。 - **动态维护**:当的结构或节点属性发生变化时,树链剖分结合线段等数据结构可以高效地维护这些变化。 #### 3. 树链剖分的应用方法 以下是树链剖分的基本应用步骤: ```python # 树链剖分的实现示例(Python) from collections import defaultdict, deque class TreeChainDecomposition: def __init__(self, n): self.n = n self.adj = defaultdict(list) self.parent = [0] * (n + 1) self.depth = [0] * (n + 1) self.size = [0] * (n + 1) self.heavy = [0] * (n + 1) self.top = [0] * (n + 1) self.pos = [0] * (n + 1) self.rpos = [0] * (n + 1) self.cnt = 0 def add_edge(self, u, v): self.adj[u].append(v) self.adj[v].append(u) def dfs1(self, u, p): self.parent[u] = p self.size[u] = 1 max_subtree = -1 for v in self.adj[u]: if v != p: self.depth[v] = self.depth[u] + 1 self.dfs1(v, u) self.size[u] += self.size[v] if self.size[v] > max_subtree: max_subtree = self.size[v] self.heavy[u] = v def dfs2(self, u, t): self.top[u] = t self.pos[u] = self.cnt self.rpos[self.cnt] = u self.cnt += 1 if self.heavy[u] != 0: self.dfs2(self.heavy[u], t) for v in self.adj[u]: if v != self.parent[u] and v != self.heavy[u]: self.dfs2(v, v) # 示例:初始化并构建 n = 5 tree = TreeChainDecomposition(n) edges = [(1, 2), (1, 3), (2, 4), (2, 5)] for u, v in edges: tree.add_edge(u, v) tree.dfs1(1, 0) tree.dfs2(1, 1) ``` 上述代码实现了树链剖分的基本框架,包括深度优先搜索(DFS)和重链划分。 #### 4. 实际应用案例 以 bzoj3252 为例,题目要求在状结构中求解路径的最大价值和。这种问题可以通过树链剖分结合线段状数组来解决。具体步骤如下: - 使用树链剖分划分为若干条链。 - 对每条链建立线段或其他支持快速区间查询和修改的数据结构。 - 在查询或修改时,将路径拆分为若干条链,并分别在线段上进行操作[^3]。 #### 5. 注意事项 - 树链剖分的时间复杂度通常为 \(O(n \log n)\),适合处理大规模数据。 - 在实际应用中,需要根据问题的具体需求选择合适的剖分方式(如重链剖分或长链剖分)。 - 结合其他数据结构(如线段状数组)可以进一步提升效率。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值