阅读笔记2020_01观点检测综述:《Stance Detection on Social Media: State of the Art and Trends》

观点检测综述:《Stance Detection on Social Media: State of the Art and Trends

1、观点相关的关键词:
Stance detection, Opinion, Stance prediction, viewpoints, perspectives, Sentiment and Stance

2、与情感分析相区分
立场检测可以通过利用非文本特征,如网络和上下文特征
情感分析主要运用文本属性。
在这里插入图片描述

3、最为常用的数据集上的性能
SemEval stance dataset
在这里插入图片描述
迁移学习结果不如监督学习

4、子任务一:观点预测(数据集)
在这里插入图片描述

5、子任务二:观点分类(数据集)
在这里插入图片描述

6、几点结论:
在社交媒体中,用户之间的相似性被认为是有助于推断立场的核心属性。
具有相同立场的个人倾向于使用相同的词汇选择来表达他们的观点。
交互元素被用来定义用户之间的相似性:①转发关系②用户标签
用户表现的网络特征:①用户行为数据②用户元数据属性
三种网络:
交互网络:代表用户与其他用户在转发、提及和回复方面的直接互动,性能最优。
偏好网络:用户喜欢的推文中发布或提及的其他用户的网络,适用于发帖或互动行为有限的用户。
连接网络:包括用户的朋友和追随者。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>