快速体验
- 打开 InsCode(快马)平台 https://www.inscode.net
- 输入框内输入如下内容:
开发一个基于普罗米修斯的微服务监控系统。功能包括:1) 使用Prometheus客户端库自动生成Go/Python微服务的指标采集代码;2) 配置Prometheus服务器自动发现和抓取微服务指标;3) 内置常见微服务监控指标模板(请求延迟、错误率等);4) 集成Grafana生成默认监控仪表盘;5) 设置基于PromQL的告警规则(如错误率超过5%触发告警)。系统应支持一键部署到Kubernetes或Docker环境,并提供完整的配置文档。 - 点击'项目生成'按钮,等待项目生成完整后预览效果

最近在做一个微服务项目,系统一复杂就发现监控成了刚需。调研了一圈,发现普罗米修斯(Prometheus)特别适合云原生环境,但配置起来步骤实在繁琐——从埋点代码到规则配置,每个环节都要手动处理,光文档就看了大半天。直到发现InsCode(快马)平台能一键生成监控系统代码,试了下简直打开新世界大门。
-
指标采集代码生成
传统方式需要手动在Go/Python服务里埋点,比如用prometheus_client库写请求计数、延迟统计的代码。快马的AI对话直接根据服务类型生成带默认指标的模板,连/metrics接口都自动配置好。我测试时输入"生成Go服务的HTTP请求监控代码",3秒就拿到了包含RED(Request-Error-Duration)指标的完整文件。 -
服务发现与抓取配置
最头疼的prometheus.yml配置环节,平台提供了智能生成器。选择"Kubernetes服务发现"后,自动输出带kubernetes_sd_configs的配置段,连relabel规则都预设了常见的__meta_kubernetes标签处理。对于Docker用户,也能生成基于docker_sd_configs的版本,省去查文档的时间。 -
开箱即用的监控模板
平台内置了微服务常用指标模板,比如: - JVM内存池使用率(对Java服务)
- Goroutine数量(Go服务)
-
Python GC耗时
这些模板不仅包含指标定义,还连带PromQL查询语句,复制就能用。 -
Grafana仪表盘集成
通过平台的"生成Grafana仪表盘"功能,可以直接导出JSON配置文件。我试用了生成的"微服务健康度看板",包含: - 请求量热力图
- 错误率趋势图
-
百分位延迟(P99/P90) 所有图表数据源都已预配为Prometheus,导入Grafana立即生效。
-
智能告警规则配置
在AI对话框输入"当错误率>5%时触发告警",系统返回的规则文件已经处理好: - 使用
rate(error_requests[1m])/rate(total_requests[1m])计算实时错误率 - 附带Alertmanager的Webhook配置模板
- 自动规避瞬时毛刺的
for持续时间设置
整个流程最惊艳的是部署环节。写完代码后点击「一键部署」,平台自动打包成Docker镜像并配置好Prometheus的scrape_configs,还能生成带ServiceMonitor的K8s YAML。实测从零开始到仪表盘出数据,真的只用了5分钟。

以前搭监控至少得折腾一天,现在用InsCode(快马)平台连PromQL都不用自己写。他们的AI能理解"给我统计容器内存使用量的同比变化"这种自然语言,直接输出正确的查询语句。对刚接触监控的开发者和运维来说,这种效率提升太重要了。
快速体验
- 打开 InsCode(快马)平台 https://www.inscode.net
- 输入框内输入如下内容:
开发一个基于普罗米修斯的微服务监控系统。功能包括:1) 使用Prometheus客户端库自动生成Go/Python微服务的指标采集代码;2) 配置Prometheus服务器自动发现和抓取微服务指标;3) 内置常见微服务监控指标模板(请求延迟、错误率等);4) 集成Grafana生成默认监控仪表盘;5) 设置基于PromQL的告警规则(如错误率超过5%触发告警)。系统应支持一键部署到Kubernetes或Docker环境,并提供完整的配置文档。 - 点击'项目生成'按钮,等待项目生成完整后预览效果
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

被折叠的 条评论
为什么被折叠?



