OpenCV中如何获取像素

坐标是从0开始的,并且是相对图像原点的位置。图像原点或者是左上角 (img->origin=IPL_ORIGIN_TL) 或者是左下角 (img->origin=IPL_ORIGIN_BL) )
  • 假设有 8-bit 1-通道的图像 I (IplImage* img):
I(x,y) ~ ((uchar*)(img->imageData + img->widthStep*y))[x]
  • 假设有 8-bit 3-通道的图像 I (IplImage* img):
I(x,y)blue ~ ((uchar*)(img->imageData + img->widthStep*y))[x*3] I(x,y)green ~ ((uchar*)(img->imageData + img->widthStep*y))[x*3+1] I(x,y)red ~ ((uchar*)(img->imageData + img->widthStep*y))[x*3+2]
例如,给点 (100,100) 的亮度增加 30 ,那么可以这样做:
CvPoint pt = {100,100}; ((uchar*)(img->imageData + img->widthStep*pt.y))[pt.x*3] += 30; ((uchar*)(img->imageData + img->widthStep*pt.y))[pt.x*3+1] += 30; ((uchar*)(img->imageData + img->widthStep*pt.y))[pt.x*3+2] += 30;
或者更高效地:
CvPoint pt = {100,100}; uchar* temp_ptr = &((uchar*)(img->imageData + img->widthStep*pt.y))[pt.x*3]; temp_ptr[0] += 30; temp_ptr[1] += 30; temp_ptr[2] += 30;
  • 假设有 32-bit 浮点数, 1-通道 图像 I (IplImage* img):
I(x,y) ~ ((float*)(img->imageData + img->widthStep*y))[x]
  • 现在,一般的情况下,假设有 N-通道,类型为 T 的图像:
I(x,y)c ~ ((T*)(img->imageData + img->widthStep*y))[x*N + c]
你可以使用宏 CV_IMAGE_ELEM( image_header, elemtype, y, x_Nc )
I(x,y)c ~ CV_IMAGE_ELEM( img, T, y, x*N + c )
也有针对各种图像(包括 4 通道图像)和矩阵的函数(cvGet2D, cvSet2D), 但是它们非常慢。
[ 编辑]

如何访问矩阵元素?

方法是类似的(下面的例子都是针对 0 起点的列和行)

  • 设有 32-bit 浮点数的实数矩阵 M (CvMat* mat):
M(i,j) ~ ((float*)(mat->data.ptr + mat->step*i))[j]
  • 设有 64-bit 浮点数的复数矩阵 M (CvMat* mat):
Re M(i,j) ~ ((double*)(mat->data.ptr + mat->step*i))[j*2] Im M(i,j) ~ ((double*)(mat->data.ptr + mat->step*i))[j*2+1]
  • 对单通道矩阵,有宏 CV_MAT_ELEM( matrix, elemtype, row, col ), 例如对 32-bit 浮点数的实数矩阵:
M(i,j) ~ CV_MAT_ELEM( mat, float, i, j ),
例如,这儿是一个 3x3 单位矩阵的初始化:
CV_MAT_ELEM( mat, float, 0, 0 ) = 1.f; CV_MAT_ELEM( mat, float, 0, 1 ) = 0.f; CV_MAT_ELEM( mat, float, 0, 2 ) = 0.f; CV_MAT_ELEM( mat, float, 1, 0 ) = 0.f; CV_MAT_ELEM( mat, float, 1, 1 ) = 1.f; CV_MAT_ELEM( mat, float, 1, 2 ) = 0.f; CV_MAT_ELEM( mat, float, 2, 0 ) = 0.f; CV_MAT_ELEM( mat, float, 2, 1 ) = 0.f; CV_MAT_ELEM( mat, float, 2, 2 ) = 1.f;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值