softmax梯度计算

在这里插入图片描述

在实际计算中,会遇到数值稳定性(Numerical Stabiltity)的问题,因为我们的 e f k e^{f_{k}} efk ∑ j e f j \sum_{j} e^{f_{j}} jefj 太大了。大数之间相除很容易导致计算结果误差很大。因此这里需要使用下面的小技巧:

e f k ∑ j e f j = C e f k C ∑ j e f j = e f k + log ⁡ C ∑ j e f j + log ⁡ c \frac{e^{f_{k}}}{\sum_{j} e^{f_{j}}}=\frac{C e^{f_{k}}}{C \sum_{j} e^{f_{j}}}=\frac{e^{f_{k}+\log ^{C}}}{\sum_{j} e^{f_{j}+\log ^{c}}} jefjefk=CjefjCefk=jefj+logcefk+logC

在实际使用过程中,经常把C取为 log ⁡ C = − max ⁡ f j \log ^{C}=-\max f_{j} logC=maxfj
也就是说,在计算损失值之前,将输出向量里面的每个值都要减去该向量里面的最大值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>