bzoj2301 [HAOI2011]Problem b

传送门
Description
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。
Input
第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k
Output
共n行,每行一个整数表示满足要求的数对(x,y)的个数
Sample Input
2
2 5 1 5 1
1 5 1 5 2
Sample Output
14
3
HINT
100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000
Source

题解

人生中的第一次莫比乌斯反演……
主要思路可以参考Po姐的课件
自己遇到的一个问题:
反演后得到式子i|dμ(di)ndmd,课件上说最多有2(n+m)个取值,原因是我们这里用的是整除,所以有许多ndmd是分别相同的,所以我们就可以直接在求值的时候分块处理,将一样的一起处理,将莫比乌斯函数前缀和一下再差分就好了。切记取值不是有4nm个!

CODE:

#include<cstdio>
typedef long long ll;
const int N=50005;
int prime[N],mu[N];
bool Prime[N];
int n,a,b,c,d,k,tot;
inline int min(const int &a,const int &b){return a<b?a:b;}
inline void swap(int &a,int &b){a^=b,b^=a,a^=b;}
inline void mobius()
{
    mu[1]=1;
    for(int i=2;i<=50000;i++)
    {
        if(!Prime[i]) prime[++tot]=i,mu[i]=-1;
        for(int j=1;prime[j]*i<=50000&&j<=tot;j++)
        {
            Prime[prime[j]*i]=1;
            if(i%prime[j]==0)
            {
                mu[i*prime[j]]=0;
                break;
            }
            mu[i*prime[j]]=-mu[i];
        }
    }
    for(int i=2;i<=50000;i++)
      mu[i]+=mu[i-1];
}
inline int ask(int l,int r)
{
    int ans=0;
    if(l>r) swap(l,r);
    for(int i=1,last;i<=l;i=last+1)
    {
        last=min(l/(l/i),r/(r/i));
        ans+=(mu[last]-mu[i-1])*(l/i)*(r/i);
    }
    return ans;
}
int main()
{
    scanf("%d",&n);
    mobius();
    while(n--)
    {
        scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
        printf("%d\n",ask(b/k,d/k)-ask(b/k,(c-1)/k)-ask((a-1)/k,d/k)+ask((a-1)/k,(c-1)/k));
    }
    return 0;
}
发布了137 篇原创文章 · 获赞 6 · 访问量 3万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览