【深度学习:深度学习的基本理论与方法】概述(一)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/SMF0504/article/details/52932228

一、概述

深度学习:一种基于无监督学习特征学习和特征层次结构的学习方法。

可能的名词:

--深度学习

--特征学习

--无监督特征学习

二、动机

传统的模式识别方法:

Low-level sensing --> Pre-processing --> Feature extract --> Feature selection --> Inference Prediction Recognition

(底层感知 -- > 预处理 --> 特征提取 -- > 特征选择 -- >  推理 预测 识别)

  • 良好的特征表达,对最终算法的准确性起了非常关键的作用;
  • 识别系统的计算和测试主要集中在特征提取部分;
  • 特征的样式目前一般都是人工设计的,靠人工提取特征。

动 机——为什么要自动学习特征

动 机——为什么要自动学习特征




没有更多推荐了,返回首页