时间复杂度
怎么理解时间复杂度?
时间复杂度是一个函数,它定性描述该算法的运行时间。
假设算法的问题规模为n,那么操作单元数量便用函数f(n)来表示,随着数据规模n的增大,算法执行时间的增长率和f(n)的增长率相同,这称作为算法的渐近时间复杂度,简称时间复杂度,记为 O(f(n))。
大O是什么?
大O用来表示上界的,当用它作为算法的最坏情况运行时间的上界,就是对任意数据输入的运行时间的上界。
拿插入排序来说,插入排序的时间复杂度我们都说是O(n2) 。输入数据的形式对程序运算时间是有很大影响的,在数据本来有序的情况下时间复杂度是O(n),但如果数据是逆序的话,插入排序的时间复杂度就是O(n2), 也就对于所有输入情况来说,最坏是O(n2) 的时间复杂度,所以称插入排序的时间复杂度为O(n2)。
同样的同理再看一下快速排序,都知道快速排序是O(nlogn),但是当数据已经有序情况下,快速排序的时间复杂度是O(n2) 的,所以严格从大O的定义来讲,快速排序的时间复杂度应该是O(n2)。
但是我们依然说快速排序是O(nlogn)的时间复杂度,这个就是业内的一个默认规定,这里说的O代表的就是一般情况,而不是严格的上界。
参考文章:关于时间复杂度,你不知道的都在这里!
如何计算算法的时间复杂度?
-
找出算法中的基本语句;
算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。 -
计算基本语句的执行次数的数量级;
只需保留f(n)中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。 -
用大Ο记号表示算法的时间性能。
将基本语句执行次数的数量级放入大Ο记号中。
如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如:
for (i=1; i<=n; i++)
x++;
for (i=1; i<=n; i++)
for (j=1; j<=n; j++)
x++;
第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n²),则整个算法的时间复杂度为Ο(n+n²)=Ο(n²)。
注、加法原则:T(n)=O(f(n))+O(g(n))=O(max(fn,gn))
常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n²)<Ο(n³)<…<Ο(2n)<Ο(n!)<O(nn)
Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环语句,其时间复杂度就是Ο(1)。Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)和Ο(n3)称为多项式时间,而Ο(2n)和Ο(n!)称为指数时间。计算机科学家普遍认为前者是有效算法,把这类问题称为P类问题,而把后者称为NP问题。
下面列举几种常见的情况:
①对于一个循环,假设循环体的时间复杂度为 O(n),循环次数为 m,则这个循环的时间复杂度为 O(n×m)。
void aFunc(int n) {
for(int i = 0; i < n; i++) { // 循环次数为 n
printf("Hello, World!\n"); // 循环体时间复杂度为 O(1)
}
}
此时时间复杂度为 O(n × 1),即 O(n)。
②对于多个循环,假设循环体的时间复杂度为 O(n),各个循环的循环次数分别是a, b, c…,则这个循环的时间复杂度为 O(n×a×b×c…)。分析的时候应该由里向外分析这些循环。
void aFunc(int n) {
for(int i = 0; i < n; i++) { // 循环次数为 n
for(int j = 0; j < n; j++) { // 循环次数为 n
printf("Hello, World!\n"); // 循环体时间复杂度为 O(1)
}
}
}
此时时间复杂度为 O(n × n × 1),即 O(n^2)。
③对于顺序执行的语句或者算法,总的时间复杂度等于其中最大的时间复杂度。
void aFunc(int n) {
// 第一部分时间复杂度为 O(n^2)
for(int i = 0; i < n; i++) {
for(int j = 0; j < n; j++) {
printf("Hello, World!\n");
}
}
// 第二部分时间复杂度为 O(n)
for(int j = 0; j < n; j++) {
printf("Hello, World!\n");
}
}
此时时间复杂度为 max(O(n2), O(n)),即 O(n2)。
④对于条件判断语句,总的时间复杂度等于其中 时间复杂度最大的路径 的时间复杂度。
void aFunc(int n)
{
if (n >= 0)
{
// 第一条路径时间复杂度为 O(n^2)
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
{
printf("输入数据大于等于零\n");
}
}
}
else
{
// 第二条路径时间复杂度为 O(n)
for(int j = 0; j < n; j++)
{
printf("输入数据小于零\n");
}
}
}
此时时间复杂度为 max(O(n2), O(n)),即 O(n2)。
提升一下难度:
①求该方法的时间复杂度:
void aFunc(int n) {
for (int i = 2; i < n; i++) {
i *= 2;
printf("%i\n", i);
}
}
参考答案:
假设循环次数为 t,则循环条件满足 2^t < n。
可以得出,执行次数t = log(2)(n),即 T(n) = log(2)(n),可见时间复杂度为 O(log(2)(n)),即 O(log n)。
②递归的时间复杂度
long aFunc(int n) {
if (n <= 1) {
return 1;
} else {
return aFunc(n - 1) + aFunc(n - 2);
}
}
递归算法的时间复杂度本质上是要看: 递归的次数 * 每次递归的时间复杂度。
可以看出上面的代码每次递归都是O(1)的操作。再来看递归了多少次,这里将i为5作为输入的递归过程 抽象成一颗递归树
从图中,可以看出f(5)是由f(4)和f(3)相加而来,那么f(4)是由f(3)和f(2)相加而来 以此类推。
在这颗二叉树中每一个节点都是一次递归,那么这棵树有多少个节点呢?
我们之前也有说到,一棵深度(按根节点深度为1)为k的二叉树最多可以有 2^k - 1 个节点。
所以该递归算法的时间复杂度为 O(2^n) 。