Graph Learing: A Survey论文阅读笔记 图神经网络的综述文章图表征学习分为四种类型:基于图信号处理方法、基于矩阵分解的方法、基于随机游走的方法、基于深度学习的方法。图神经网络的发展线图学习及其应用图在未来的发展方向动态网络生成图学习(图生成对抗网络)公平图学习图学习的可解释性...
Signed Graph Convolutional Network论文阅读笔记 符号图存在正负边。在SGCN算法中,利用平衡理论在各个层之间聚合和传播信息。设计SGCN的难点在于:因为负向边与正向边本质上是不同的,如何正确地处理负向边?如何在同一个模型里边联合正向边和负向边来学习节点表征。论文的主要贡献在于:3. 基于平衡理论设计了SGCN算法。4. 构建了SGCN的目标函数来高效地学习低维表征。在论文的邻接矩阵中以111表示正向边,−1-1−1表示负向边,000表示无边。在符号图中1和-1的语义是不同的,因此不能把所有的用户归为一类。Q:什么是平衡理论?A:
Representation Learning for Attributed Multiplex Heterogeneous Network论文阅读笔记 论文提出的算法主要是针对复杂的多重异构网络(即节点有属性,节点类型有多种,边的类型有多种)。算法名字叫做GATNE,可以分为直推式GATNE-T和归纳式GATNE-I。每个节点的embedding包括base embedding和edge embedding。其中base embedding是用在共有的,edge embedding是针对不同类型的边构造的图生成的embedding。对于GATNE-T算法,base embedding是通过网络结构直接训练生成的。edge embedding是在针对不同
Graph Transformer Networks论文阅读笔记 因为在异构图中进行手动标注meta-path需要耗费大量的人力资源,所以本算法提出了通过学习meta-path的机制。进行1×11\times 11×1的卷积,将所有的meta-path生成的图片进行存储(为了能够处理原先的边,特此引入了单位矩阵)。假设一共有nnn个图片,则进行1×1×n×C1\times 1\times n\times C1×1×n×C的卷积操作,其中CCC是通道数。生成的矩阵两者相乘即可。上图为多长度的meta-path。...
Heterogeneous Graph Attention Network论文阅读笔记 论文实现了在异构图(节点和边的种类数大于2的图)实现Attention机制。节点级别的:node-level Attention,学习节点和通过元路径与其相连的节点之间的重要程度。语义级别的:semantic-level attention,学习不同元路径的重要程度。不同的节点类型可能会有不同的特征空间。例如,人节点的属性有性别、姓名等,电影节点的属性有上映时间等。异构图中有大量复杂且富含价值的语义信息,都是通过元路径来反映的。semantic-level attention是用来学习每种元路径的
pandas中read_excel函数参数解析 def read_excel( io, sheet_name=0, header=0, names=None, index_col=None, usecols=None, squeeze=False, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skiprows=None, nrows
git学习笔记 Repository仓库:用来保存项目代码,每个项目有一个仓库Star收藏Fork复制别人的仓库pull request自己fork的仓库更新后,发起原仓库更新请求Watch关注此项目的动态Issue事务卡片,讨论使用的地方Git工作区域工作区添加、编辑、修改文件等动作暂存区暂存已经修改的文件最后统一提交到仓库Git仓库最终确定的文件保存到仓库Git初始化操作基本信息设置1. 设置用户名git config --global user.name 'SXxtyz'
python装饰器总结 装饰器的使用方法装饰器是什么?当程序函数写好之后业务做了修改,此时需要更改原来的函数。为了简化此操作,即不再改变原函数,python提供了装饰器机制。同时也可以避免大量的代码重复,例如有三个函数f1,f2,f3分别需要计算三个函数的执行时间,如下所示:from time import time, sleepdef f2(): start = time() for i in range(100): eval('1 + 1 * 2') sleep(1) e
pandas进行多条件筛选时出错 在运行代码print(train_df[(train_df['item_price'] < q1 - 1.5 * iqr) or (train_df['item_price'] > q3 + 1.5 * iqr)])时会报错ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().原因不了解,只需将or改为∣|∣即可,好像进行条件
pandas寻找四分位数及判断离群点 小菜的养殖场【题目描述】\quad\qquad清明节快到了,为了更好的经营农庄,小菜必须对他的养殖场里的鼹鼠进行重新分配。\qquad已知小菜的养殖场可以看成一块长nnn宽mmm的长方形,包含了n×mn\times mn×m个正方形方格,每个正方形方格里可以放养一只鼹鼠,但是这些鼹鼠是来自菜国的,凶猛无比,因此不能把一只鼹鼠放养在另一只鼹鼠的八邻域格子内,否则两只鼹鼠会同归于尽。\qquad小菜一共养了kkk只鼹鼠,显然,找到一种可行的放养方案是很容易的,可是小菜真的是又菜又事b,他想知道将kkk
pandas.read_csv参数分析 pandas中read_csv文件的参数包括import pandas as pdpd.read_csv( filepath_or_buffer: FilePathOrBuffer, sep=",", delimiter=None, # Column and Index Locations and Names header="infer", names=None, index_col=None, usecols=None, squeeze
Practical Secure Aggregation for Privacy-Preserving Machine Learning论文阅读笔记 提出了一种安全聚合算法,Secure Aggregation算法,可以使得在多方学习(如联邦学习)中各方client在不暴露各自梯度的情况下实现梯度的聚合。实验我们提出了安全计算向量之和的算法,它满足常数迭代轮次、低通信代价、对故障具有鲁棒性、且有一个可信度受限的server。server有两种角色:一是想其他参与方发送信息,二是计算最终结果。鉴于联邦学习系统的缺点(对于隐私的要求以及终端不同步的问题),急切需要一种安全聚合算法来解决这些问题:操作高维数据;提高通信效率;对终端用户的失联的鲁棒
CCF元素选择器 思路fat数组保存其直接祖先#include <bits/stdc++.h>using namespace std;const int maxn = 105;int n, m, fat[maxn], dot[maxn];string name[maxn], label[maxn], line, s;int main() { scanf("%d %d", &n, &m); for(int i = 1; i <= n; i++) {...
python并发编程multiprocessing、threading、asyncio 多线程并发threading模块,利用CPU和IO可同时执行的原理,让CPU在IO执行时执行**(多线程)**多CPU并行multiprocessing模块,利用多核CPU的能力,实现并行执行任务**(多进程)**多机器并行hadoop/hive/sparkasyncio模块,在单线程利用CPU和IO同时执行的原理,实现函数异步执行**(异步IO*)**使用Lock对资源加锁,防止冲突访问使用Queue实现不同线程/进程之间的数据通信,实现生产者-消费者模式使用线程池Pool/进程池Poo