BP的详细推导过程

  最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题。反向传播法其实是神经网络的基础了,但是很多人在学的时候总是会遇到一些问题,或者看到大篇的公式觉得好像很难就退缩了,其实不难,就是一个链式求导法则反复用。如果不想看公式,可以直接把数值带进去,实际的计算一下,体会一下这个过程之后再来推导公式,这样就会觉得很容易了。

  说到神经网络,大家看到这个图应该不陌生:

 

  这是典型的三层神经网络的基本构成,Layer L1是输入层,Layer L2是隐含层,Layer L3是隐含层,我们现在手里有一堆数据{x1,x2,x3,...,xn},输出也是一堆数据{y1,y2,y3,...,yn},现在要他们在隐含层做某种变换,让你把数据灌进去后得到你期望的输出。如果你希望你的输出和原始输入一样,那么就是最常见的自编码模型(Auto-Encoder)。可能有人会问,为什么要输入输出都一样呢?有什么用啊?其实应用挺广的,在图像识别,文本分类等等都会用到,我会专门再写一篇Auto-Encoder的文章来说明,包括一些变种之类的。如果你的输出和原始输入不一样,那么就是很常见的人工神经网络了,相当于让原始数据通过一个映射来得到我们想要的输出数据,也就是我们今天要讲的话题。

  本文直接举一个例子,带入数值演示反向传播法的过程,公式的推导等到下次写Auto-Encoder的时候再写,其实也很简单,感兴趣的同学可以自己推导下试试:)(注:本文假设你已经懂得基本的神经网络构成,如果完全不懂,可以参考Poll写的笔记:[Mechine Learning & Algorithm] 神经网络基础

  假设,你有这样一个网络层:

  第一层是输入层,包含两个神经元i1,i2,和截距项b1;第二层是隐含层,包含两个神经元h1,h2和截距项b2,第三层是输出o1,o2,每条线上标的wi是层与层之间连接的权重,激活函数我们默认为sigmoid函数。

  现在对他们赋上初值,如下图:

  其中,输入数据  i1=0.05,i2=0.10;

     输出数据 o1=0.01,o2=0.99;

     初始权重  w1=0.15,w2=0.20,w3=0.25,w4=0.30;

           w5=0.40,w6=0.45,w7=0.50,w8=0.55

 

  目标:给出输入数据i1,i2(0.05和0.10),使输出尽可能与原始输出o1,o2(0.01和0.99)接近。

 

  Step 1 前向传播

  1.输入层---->隐含层:

  计算神经元h1的输入加权和:

神经元h1的输出o1:(此处用到激活函数为sigmoid函数):

 

 

  同理,可计算出神经元h2的输出o2:

  

 

  2.隐含层---->输出层:

  计算输出层神经元o1和o2的值:

  

 

这样前向传播的过程就结束了,我们得到输出值为[0.75136079 , 0.772928465],与实际值[0.01 , 0.99]相差还很远,现在我们对误差进行反向传播,更新权值,重新计算输出。

 

Step 2 反向传播

1.计算总误差

总误差:(square error)

但是有两个输出,所以分别计算o1和o2的误差,总误差为两者之和:

 

2.隐含层---->输出层的权值更新:

以权重参数w5为例,如果我们想知道w5对整体误差产生了多少影响,可以用整体误差对w5求偏导求出:(链式法则)

下面的图可以更直观的看清楚误差是怎样反向传播的:

现在我们来分别计算每个式子的值:

计算

计算

(这一步实际上就是对sigmoid函数求导,比较简单,可以自己推导一下)

 

计算

最后三者相乘:

这样我们就计算出整体误差E(total)对w5的偏导值。

回过头来再看看上面的公式,我们发现:

为了表达方便,用来表示输出层的误差:

因此,整体误差E(total)对w5的偏导公式可以写成:

如果输出层误差计为负的话,也可以写成:

最后我们来更新w5的值:

(其中,是学习速率,这里我们取0.5)

同理,可更新w6,w7,w8:

 

3.隐含层---->隐含层的权值更新:

 方法其实与上面说的差不多,但是有个地方需要变一下,在上文计算总误差对w5的偏导时,是从out(o1)---->net(o1)---->w5,但是在隐含层之间的权值更新时,是out(h1)---->net(h1)---->w1,而out(h1)会接受E(o1)和E(o2)两个地方传来的误差,所以这个地方两个都要计算。

 

 

计算

先计算

同理,计算出:

          

两者相加得到总值:

再计算

再计算

最后,三者相乘:

 为了简化公式,用sigma(h1)表示隐含层单元h1的误差:

最后,更新w1的权值:

同理,额可更新w2,w3,w4的权值:

 

  这样误差反向传播法就完成了,最后我们再把更新的权值重新计算,不停地迭代,在这个例子中第一次迭代之后,总误差E(total)由0.298371109下降至0.291027924。迭代10000次后,总误差为0.000035085,输出为[0.015912196,0.984065734](原输入为[0.01,0.99]),证明效果还是不错的。


  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
BP神经网络是一种常用的人工神经网络,它可以用于分类、回归、聚类等多种任务。下面是BP神经网络的推导过程: 1. 神经元模型 BP神经网络的基本单元是神经元,每个神经元可以看作是一个非线性函数,它的输入经过加权和后,再经过一个非线性激活函数,最终输出一个结果。常用的激活函数有sigmoid函数、ReLU函数等。 2. 前向传播 BP神经网络的前向传播过程即为输入层到输出层的信息传递过程。对于一个有n个输入和m个输出的神经网络,假设第i个神经元的输入为$x_i$,输出为$y_i$,则有: $$y_i=f(\sum_{j=1}^{n}w_{ij}x_j+b_i)$$ 其中,$w_{ij}$表示第i个神经元与第j个神经元之间的权值,$b_i$表示第i个神经元的偏置,$f$表示激活函数。 3. 误差计算 假设神经网络的输出为$y=[y_1,y_2,...,y_m]$,目标输出为$t=[t_1,t_2,...,t_m]$,则神经网络的误差可以用均方误差(MSE)来表示: $$E=\frac{1}{2}\sum_{i=1}^{m}(y_i-t_i)^2$$ 4. 反向传播 BP神经网络的反向传播过程即为误差反向传递过程,目的是通过误差对网络中的权值和偏置进行更新。具体步骤如下: (1)计算输出层的误差,对于第i个输出神经元,其误差为: $$\delta_i=y_i-t_i$$ (2)计算隐层的误差,对于第j个隐层神经元,其误差为: $$\delta_j=f'(net_j)\sum_{i=1}^{m}\delta_i w_{ji}$$ 其中,$f'(net_j)$表示激活函数在输入$net_j$处的导数,$w_{ji}$表示第j个隐层神经元与第i个输出神经元之间的权值。 (3)根据误差更新权值和偏置,对于第i个输出神经元与第j个隐层神经元之间的权值,其更新公式为: $$\Delta w_{ji}=-\eta\delta_i f'(net_j)x_i$$ 其中,$\eta$表示学习率,$x_i$表示第i个输入神经元的输出。偏置的更新公式为: $$\Delta b_j=-\eta\delta_jf'(net_j)$$ (4)重复执行(1)~(3)步,直到误差满足收敛条件。 5. 网络训练 BP神经网络的训练过程即为不断调整网络中的权值和偏置,使得网络的输出与目标输出尽可能接近的过程。具体步骤如下: (1)初始化网络中的权值和偏置。 (2)将样本输入到网络中,执行前向传播,计算输出。 (3)计算误差,执行反向传播,更新权值和偏置。 (4)重复执行(2)~(3)步,直到误差满足收敛条件。 (5)将训练好的网络用于预测新的样本。 以上就是BP神经网络的推导过程,它可以用于解决多种任务,并且具有较强的拟合能力和泛化能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值