【BZOJ】2005 [Noi2010]能量采集

[Noi2010]能量采集


题目链接


题目大意

    中文题,题目意思很清楚,这里就不说了,总之就是要你求这个:

ans=x=1ny=1m[2(gcd(x,y)1)+1]


题解

莫比乌斯反演 化简

    可以化简:

ans=2x=1ny=1mgcd(x,y)nm

    可以看到现在的首要任务是求前面的和式,考虑到gcd(x,y)只有有限个值,我们设
f(d)gcd(x,y)=d(x,y)

    当然x和y都在范围内。
    这样的话我们的ans可以改写为:
ans=2ddf(d)nm

    看到首要任务是求f(d),这里我们用莫比乌斯反演,于是我们又设:
F(d)d|gcd(x,y)(x,y)

    又因为:
F(d)=ndmd

    根据反演公式,有:
f(x)=x|dμ(dx)ndmd

    到这里基本又是一些老东西了,令T=xd什么的,最后可以化简到:
f(x)=TnTmTx|Tμ(Tx)

    把x换成d,再带入ans,得到:
ans=TnTmTd|Tdμ(Tx)

    到这里,我们的μ(x)函数有一个性质:
d|ndμ(nd)=ϕ(n)

    这个可以用用欧拉函数的性质d|nϕ(d)=n这个式子莫比乌斯反演得来,所以我们可以把ans变为
ans=TnTmTϕ(T)

    可以看到最后的式子非常简单,先筛出phi(d)然后分块求和即可。


代码

    不能用%I64d,会WA

#include <iostream>
#include <cstring>
#include <cstdio>
#define LL long long
#define maxn 100005

using namespace std;

LL n,m,p[maxn-5],cnt,phi[maxn];
bool vis[maxn-5];

void setup(int high)
{
    cnt=0;
    memset(p,0,sizeof(p));
    memset(vis,0,sizeof(vis));
    memset(phi,0,sizeof(phi));
    phi[1]=1;
    for (int i=2;i<=high;i++)
    {
        if (!vis[i])
        {
            vis[i]=1; p[cnt++]=i;
            phi[i]=i-1;
        }
        for (int j=0;j<cnt && i*p[j]<=high;j++)
        {
            vis[i*p[j]]=1;
            if (i%p[j]) phi[i*p[j]]=phi[i]*(p[j]-1);
            else
            {
                phi[i*p[j]]=phi[i]*p[j];
                break;
            }
        }
    }
    for (int i=1;i<=high;i++) phi[i]+=phi[i-1];
}



int main()
{
    scanf("%lld%lld",&n,&m);
    setup(min(n,m));
    LL last=0,t=min(n,m);
    LL ans=0;
    for (int i=1;i<=t;i=last+1)
    {
        last=min(n/(n/i),m/(m/i));
        ans+=(LL) (n/i)*(m/i)*(phi[last]-phi[i-1]);
    }
    ans=(LL)ans*2-n*m;
    printf("%lld\n",ans);
    return 0;
}
发布了215 篇原创文章 · 获赞 4 · 访问量 9万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览