【JAVA实现】基于皮尔逊相关系数的相似度计算

  最近在看《集体智慧编程》,相比其他机器学习的书籍,这本书有许多案例,更贴近实际,而且也很适合我们这种准备学习machine learning的小白。

       这本书我觉得不足之处在于,里面没有对算法的公式作讲解,而是直接用代码去实现,所以给想具体了解该算法带来了不便,所以想写几篇文章来做具体的说明。以下是第一篇,对皮尔逊相关系数作讲解,并采用了自己比较熟悉的java语言做实现。

       皮尔逊数学公式如下,来自维基百科。


       其中,E数学期望,cov表示协方差\sigma_X\sigma_Y是标准差

       化简后得:



       皮尔逊相似度计算的算法还是很简单的,实现起来也不难。只要求变量X、Y、乘积XY,X的平方,Y的平方的和。我的代码所使用的数据测试集来自《集体智慧编程》一书。代码如下:

[java]  view plain  copy
  1. package pearsonCorrelationScore;  
  2.   
  3. import java.util.ArrayList;  
  4. import java.util.HashMap;  
  5. import java.util.List;  
  6. import java.util.Map;  
  7. import java.util.Map.Entry;  
  8.   
  9. /** 
  10.  * @author shenchao 
  11.  * 
  12.  *         皮尔逊相关度评价 
  13.  * 
  14.  *         以《集体智慧编程》一书用户评价相似度数据集做测试 
  15.  */  
  16. public class PearsonCorrelationScore {  
  17.   
  18.     private Map<String, Map<String, Double>> dataset = null;  
  19.   
  20.     public PearsonCorrelationScore() {  
  21.         initDataSet();  
  22.     }  
  23.   
  24.     /** 
  25.      * 初始化数据集 
  26.      */  
  27.     private void initDataSet() {  
  28.         dataset = new HashMap<String, Map<String, Double>>();  
  29.   
  30.         // 初始化Lisa Rose 数据集  
  31.         Map<String, Double> roseMap = new HashMap<String, Double>();  
  32.         roseMap.put("Lady in the water"2.5);  
  33.         roseMap.put("Snakes on a Plane"3.5);  
  34.         roseMap.put("Just My Luck"3.0);  
  35.         roseMap.put("Superman Returns"3.5);  
  36.         roseMap.put("You, Me and Dupree"2.5);  
  37.         roseMap.put("The Night Listener"3.0);  
  38.         dataset.put("Lisa Rose", roseMap);  
  39.   
  40.         // 初始化Jack Matthews 数据集  
  41.         Map<String, Double> jackMap = new HashMap<String, Double>();  
  42.         jackMap.put("Lady in the water"3.0);  
  43.         jackMap.put("Snakes on a Plane"4.0);  
  44.         jackMap.put("Superman Returns"5.0);  
  45.         jackMap.put("You, Me and Dupree"3.5);  
  46.         jackMap.put("The Night Listener"3.0);  
  47.         dataset.put("Jack Matthews", jackMap);  
  48.   
  49.         // 初始化Jack Matthews 数据集  
  50.         Map<String, Double> geneMap = new HashMap<String, Double>();  
  51.         geneMap.put("Lady in the water"3.0);  
  52.         geneMap.put("Snakes on a Plane"3.5);  
  53.         geneMap.put("Just My Luck"1.5);  
  54.         geneMap.put("Superman Returns"5.0);  
  55.         geneMap.put("You, Me and Dupree"3.5);  
  56.         geneMap.put("The Night Listener"3.0);  
  57.         dataset.put("Gene Seymour", geneMap);  
  58.     }  
  59.   
  60.     public Map<String, Map<String, Double>> getDataSet() {  
  61.         return dataset;  
  62.     }  
  63.   
  64.     /** 
  65.      * @param person1 
  66.      *            name 
  67.      * @param person2 
  68.      *            name 
  69.      * @return 皮尔逊相关度值 
  70.      */  
  71.     public double sim_pearson(String person1, String person2) {  
  72.         // 找出双方都评论过的电影,(皮尔逊算法要求)  
  73.         List<String> list = new ArrayList<String>();  
  74.         for (Entry<String, Double> p1 : dataset.get(person1).entrySet()) {  
  75.             if (dataset.get(person2).containsKey(p1.getKey())) {  
  76.                 list.add(p1.getKey());  
  77.             }  
  78.         }  
  79.   
  80.         double sumX = 0.0;  
  81.         double sumY = 0.0;  
  82.         double sumX_Sq = 0.0;  
  83.         double sumY_Sq = 0.0;  
  84.         double sumXY = 0.0;  
  85.         int N = list.size();  
  86.   
  87.         for (String name : list) {  
  88.             Map<String, Double> p1Map = dataset.get(person1);  
  89.             Map<String, Double> p2Map = dataset.get(person2);  
  90.   
  91.             sumX += p1Map.get(name);  
  92.             sumY += p2Map.get(name);  
  93.             sumX_Sq += Math.pow(p1Map.get(name), 2);  
  94.             sumY_Sq += Math.pow(p2Map.get(name), 2);  
  95.             sumXY += p1Map.get(name) * p2Map.get(name);  
  96.         }  
  97.   
  98.         double numerator = sumXY - sumX * sumY / N;  
  99.         double denominator = Math.sqrt((sumX_Sq - sumX * sumX / N)  
  100.                 * (sumY_Sq - sumY * sumY / N));  
  101.   
  102.         // 分母不能为0  
  103.         if (denominator == 0) {  
  104.             return 0;  
  105.         }  
  106.   
  107.         return numerator / denominator;  
  108.     }  
  109.   
  110.     public static void main(String[] args) {  
  111.         PearsonCorrelationScore pearsonCorrelationScore = new PearsonCorrelationScore();  
  112.         System.out.println(pearsonCorrelationScore.sim_pearson("Lisa Rose",  
  113.                 "Jack Matthews"));  
  114.     }  
  115.   
  116. }  
        将各个测试集的数据反映到二维坐标面中,如下所示:


       上述程序求得的值实际上就为该直线的斜率。其斜率的区间在[-1,1]之间,其绝对值的大小反映了两者相似度大小,斜率越大,相似度越大,当相似度为1时,该直线为一条对角线。

好的,针对您的问题,以下是Java实现经典的协同过滤算法使用皮尔逊系数的步骤: 步骤1:加载数据集 首先,我们需要加载一个包含用户偏好数据的数据集。该数据集通常包含用户对物品的评分。例如,以下是一个包含用户对电影的评分数据集: userId movieId rating 1 101 5.0 1 102 3.0 1 103 2.5 2 101 2.0 2 102 2.5 2 103 5.0 3 101 2.5 3 103 3.0 3 104 3.5 步骤2:计算用户之间的相似度 接下来,我们使用皮尔逊系数来计算用户之间的相似度。皮尔逊系数是一种衡量两个变量之间线性相关性的方法。在协同过滤中,我们使用皮尔逊系数来计算用户之间的相似度,从而推荐物品。以下是计算用户之间相似度Java代码: public static double pearsonCorrelationScore(Map<String, Map<String, Double>> data, String user1, String user2) { Map<String, Double> user1Ratings = data.get(user1); Map<String, Double> user2Ratings = data.get(user2); double sum1 = 0, sum2 = 0, sum1Sq = 0, sum2Sq = 0, pSum = 0; int n = 0; for (String item : user1Ratings.keySet()) { if (user2Ratings.containsKey(item)) { n++; double rating1 = user1Ratings.get(item); double rating2 = user2Ratings.get(item); sum1 += rating1; sum2 += rating2; sum1Sq += Math.pow(rating1, 2); sum2Sq += Math.pow(rating2, 2); pSum += rating1 * rating2; } } if (n == 0) { return 0; } double num = pSum - (sum1 * sum2 / n); double den = Math.sqrt((sum1Sq - Math.pow(sum1, 2) / n) * (sum2Sq - Math.pow(sum2, 2) / n)); if (den == 0) { return 0; } return num / den; } 步骤3:寻找与当前用户最相似的用户 接下来,我们需要找到与当前用户最相似的用户。我们可以使用步骤2中的pearsonCorrelationScore函数来计算用户之间的相似度,并将它们作为键值对存储在一个Map中。以下是Java代码: public static List<String> findSimilarUsers(Map<String, Map<String, Double>> data, String user) { List<String> similarUsers = new ArrayList<>(); Map<String, Double> scores = new HashMap<>(); for (String otherUser : data.keySet()) { if (!otherUser.equals(user)) { double score = pearsonCorrelationScore(data, user, otherUser); if (score > 0) { scores.put(otherUser, score); } } } similarUsers.addAll(scores.keySet()); Collections.sort(similarUsers, (u1, u2) -> scores.get(u2).compareTo(scores.get(u1))); return similarUsers; } 步骤4:推荐物品给用户 最后,我们可以使用与当前用户最相似的用户的历史评分数据来推荐物品给用户。我们可以计算当前用户没有评分的物品的加权评分,并将它们按照评分从高到低排序,以便为用户提供推荐物品。以下是Java代码: public static List<String> getRecommendations(Map<String, Map<String, Double>> data, String user) { List<String> recommendations = new ArrayList<>(); Map<String, Double> scores = new HashMap<>(); Map<String, Double> totals = new HashMap<>(); for (String otherUser : findSimilarUsers(data, user)) { Map<String, Double> otherUserRatings = data.get(otherUser); for (String item : otherUserRatings.keySet()) { if (!data.get(user).containsKey(item)) { double score = pearsonCorrelationScore(data, user, otherUser) * otherUserRatings.get(item); scores.put(item, scores.getOrDefault(item, 0.0) + score); totals.put(item, totals.getOrDefault(item, 0.0) + pearsonCorrelationScore(data, user, otherUser)); } } } for (String item : scores.keySet()) { double score = scores.get(item); double total = totals.get(item); recommendations.add(item + ": " + (total > 0 ? score / total : 0)); } Collections.sort(recommendations, (r1, r2) -> Double.compare(Double.parseDouble(r2.split(": ")[1]), Double.parseDouble(r1.split(": ")[1]))); return recommendations; } 以上就是Java实现经典的协同过滤算法使用皮尔逊系数的步骤。希望对您有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值