狄拉克函数和广义函数 | 线性泛函

δ \delta δ函数和广义函数

δ \delta δ函数起源于集中分布物理量的数学描述。

描述一个在空间连续分布的物理量 Q Q Q,通常由两种方式。一种是局部性的,给出密度函数(分布) ρ ( M ) = d Q d M , M ∈ R n ( n = 1 , 2 , 3 ) ; \rho(M)=\frac{dQ}{dM},M\in \bold R^n(n=1,2,3); ρ(M)=dMdQ,MRn(n=1,2,3);另一种是整体性的,通过空间任意区域 Ω ⊂ R n \Omega\subset \bold R^n ΩRn该物理量的总量
Q ( Ω ) = ∫ Ω ρ ( M ) d M Q(\Omega)=\int_{\Omega}\rho(M)dM Q(Ω)=Ωρ(M)dM
给出。对于集中分布的物理量,也可通过这两种方式来表达。先来讨论集中分布物理量的密度函数。

(点电荷的线密度)直线L上仅在 x = 0 x=0 x=0处置一单位电荷,这可以看成是单位电荷均匀分布在小区间 [ − ϵ , ϵ ] [-\epsilon,\epsilon] [ϵ,ϵ]上当 ϵ → 0 \epsilon \to 0 ϵ0时的极限情况,后者的密度
ρ ϵ = { 1 2 ϵ , ∣ x ∣ ≤ ϵ 0 , ∣ x ∣ > ϵ \rho_\epsilon= \begin{cases} \frac{1}{2\epsilon}, & |x|\leq \epsilon \\ 0, & |x|>\epsilon \end{cases} ρϵ={2ϵ1,0,xϵx>ϵ
且对 ∀ ϵ > 0 \forall \epsilon>0 ϵ>0,直线上的电荷总量
Q = ∫ − ∞ + ∞ ρ ϵ ( x ) d x = 1 Q=\int_{-\infty}^{+\infty}\rho_\epsilon(x)dx=1 Q=+ρϵ(x)dx=1
ϵ → 0 \epsilon \to 0 ϵ0,可由 ρ ϵ ( x ) \rho_{\epsilon}(x) ρϵ(x)的极限推得单位点电荷的分布
ρ ( x ) = { + ∞ , x = 0 0 , x ≠ 0 \rho(x)= \begin{cases} +\infty , & x=0 \\ 0, & x \neq 0 \end{cases} ρ(x)={+,0,x=0x=0
且保持直线上的电荷总量为1。

将集中于 x = 0 x=0 x=0点的单位物理量引起的密度函数称为 δ \delta δ函数,记为 δ ( x ) \delta(x) δ(x)。即 δ ( x ) \delta(x) δ(x)是满足条件
δ ( x ) = { ∞ , x = 0 0 , x ≠ 0 \delta(x)= \begin{cases} \infty, & x=0 \\ 0, & x \neq 0 \end{cases} δ(x)={,0,x=0x=0

∫ − ∞ + ∞ δ ( x ) d x = 1 \int_{-\infty}^{+\infty}\delta(x)dx=1 +δ(x)dx=1
的函数。

置于 x = ξ x=\xi x=ξ点的单位物理量引起的密度函数可用 δ ( x ) \delta(x) δ(x)的平移 δ ( x − ξ ) \delta(x-\xi) δ(xξ)表示
δ ( x − ξ ) = { + ∞ , x = ξ 0 , x ≠ ξ \delta(x-\xi)= \begin{cases} +\infty, & x=\xi \\ 0, & x \neq \xi \end{cases} δ(xξ)={+,0,x=ξx=ξ
无论是关于空间还是关于时间集中分布的物理量都可用 δ \delta δ函数来描述。关于时间集中分布的物理量在实际问题中常称为脉冲。

δ \delta δ函数有一条非常重要的基本性质,应用上称为筛选性。即对任意 φ ( x ) ∈ C ( R ) \varphi(x)\in C(\bold R) φ(x)C(R)
∫ a b δ ( x ) φ ( x ) d x = { φ ( 0 ) , 0 ∈ [ a , b ] , 0 , 0 ∈ [ a , b ] (1) \int_a^b\delta(x)\varphi(x)dx = \begin{cases} \varphi(0), & 0 \in[a,b], \\ 0, & 0\in[a,b] \end{cases} \tag{1} abδ(x)φ(x)dx={φ(0),0,0[a,b],0[a,b](1)
特别地
∫ − ∞ + ∞ δ ( x ) φ ( x ) d x = φ ( 0 ) (2) \int_{-\infty}^{+\infty}\delta(x)\varphi(x)dx=\varphi(0) \tag{2} +δ(x)φ(x)dx=φ(0)(2)
可以这样看,由于当 x ≠ 0 x\neq 0 x=0 δ ( x ) = 0 \delta(x)=0 δ(x)=0,故
∫ − ∞ + ∞ δ ( x ) φ ( x ) d x = ∫ − ∞ + ∞ δ ( x ) φ ( 0 ) d x = φ ( 0 ) ∫ − ∞ + ∞ δ ( x ) d x = φ ( 0 ) \int_{-\infty}^{+\infty}\delta(x)\varphi(x)dx=\int_{-\infty}^{+\infty}\delta(x)\varphi(0)dx=\varphi(0)\int_{-\infty}^{+\infty}\delta(x)dx=\varphi(0) +δ(x)φ(x)dx=+δ(x)φ(0)dx=φ(0)+δ(x)dx=φ(0)
因此 δ ( x − ξ ) \delta(x-\xi) δ(xξ)的筛选性为
∫ a b δ ( x − ξ ) φ ( x ) d x = { φ ( ξ ) , ξ ∈ [ a , b ] 0 , ξ ∈ [ a , b ] \int_a^b\delta(x-\xi)\varphi(x)dx= \begin{cases} \varphi(\xi), & \xi\in [a,b] \\ 0, & \xi\in[a,b] \end{cases} abδ(xξ)φ(x)dx={φ(ξ),0,ξ[a,b]ξ[a,b]
特别地
∫ − ∞ + ∞ δ ( x − ξ ) φ ( x ) d x = φ ( ξ ) \int_{-\infty}^{+\infty}\delta(x-\xi)\varphi(x)dx=\varphi(\xi) +δ(xξ)φ(x)dx=φ(ξ)
式(1)就是集中分布物理量的另一种数学描述,当 φ ( x ) = 1 \varphi(x)=1 φ(x)=1时,式(1)说明,只要区间里包含 x = 0 x=0 x=0点,该区间内此物理量的总量为1,否则总量为0,对一般的 φ ( x ) \varphi(x) φ(x),式(1)是 φ ( x ) \varphi(x) φ(x) [ a , b ] [a,b] [a,b]上以 δ ( x ) \delta(x) δ(x)为权函数的加权平均,同样地反映了 δ ( x ) \delta(x) δ(x)的集中分布性。所以,也可把式(1)或式(2)作为 δ ( x ) \delta(x) δ(x)的另一种定义。

选用式(2)作为 δ ( x ) \delta(x) δ(x)的定义,使我们对 δ \delta δ函数有了一种全新的认识。 δ \delta δ函数实际上是一个映射,它把 C ( R ) C(\bold R) C(R)中的元素 φ ( x ) \varphi(x) φ(x)映成了 R \bold R R中的一个数 φ ( 0 ) \varphi(0) φ(0).称函数空间到数域的线性映射为函数空间上的一个线性泛函,则 δ \delta δ函数就是 C ( R ) C(\bold R) C(R)上的一个特殊的线性泛函,用内积或积分形式记 δ \delta δ函数对应的泛函值,即
< δ ( x ) , φ ( x ) > = ∫ − ∞ + ∞ δ ( x ) φ ( x ) d x = φ ( 0 ) <\delta(x),\varphi(x)>=\int_{-\infty}^{+\infty}\delta(x)\varphi(x)dx=\varphi(0) <δ(x),φ(x)>=+δ(x)φ(x)dx=φ(0)
如果一个只在有限区间上不为0的可积函数 f ( x ) f(x) f(x),则由 < f ( x ) , φ ( x ) > = ∫ − ∞ + ∞ f ( x ) φ ( x ) d x <f(x),\varphi(x)>=\int_{-\infty}^{+\infty}f(x)\varphi(x)dx <f(x),φ(x)>=+f(x)φ(x)dx也确定了一个 C ( R ) C(\bold R) C(R)上的线性泛函。所以,从线性泛函的角度, δ ( x ) \delta(x) δ(x) f ( x ) f(x) f(x)并无二异。称 C ( R ) C(\bold R) C(R)上的线性泛函为广义函数。,线性泛函的全体构成了一个广义函数空间,即为 C ′ ( R ) C'(\bold R) C(R),称为基本函数空间 C ( R ) C(\bold R) C(R)的对偶空间。上述 δ ( x ) , f ( x ) \delta(x),f(x) δ(x),f(x)均为广义函数,称 δ ( x ) \delta(x) δ(x)为奇异广义函数,称 f ( x ) f(x) f(x)为正则广义函数。

基本函数空间可以是不同的,定义在其上的线性泛函的全体构成的广义函数空间也就不同。例如,基本函数空间是 C ∞ ( R ) C^{\infty}(\bold R) C(R)时,与其对偶的广义函数空间就记为 ( C ∞ ( R ) ) ′ (C^{\infty}(\bold R))' (C(R)),上述 δ ( x ) , f ( x ) \delta(x),f(x) δ(x),f(x)也都是此空间中的广义函数。以后常常用 φ ( x ) , φ n ( x ) , ψ ( x ) \varphi(x),\varphi_n(x),\psi(x) φ(x),φn(x),ψ(x)等表示基本函数空间中的函数,而广义函数空间中的广义函数常常用 f ( x ) , f n ( x ) , g ( x ) f(x),f_n(x),g(x) f(x),fn(x),g(x)等表示。

总之,从物理的角度 δ ( x ) \delta(x) δ(x)表示一种特殊的分布,从数学的角度它表示一个基本函数空间上特殊的线性泛函,在线性泛函的基础上建立起广义函数的理论,使得在广义函数中可以通行无阻地进行各种代数和分析运算。

狄拉克函数(Dirac delta function),通常表示为&delta;(x),是一种理想化的数学构造,它在数学和物理学中有着广泛的应用。狄拉克函数具有以下特:它在除了原点以外的所有地方的值都为零,而在原点处的值无限大,但是它在整个数轴上的积分等于1。因此,狄拉克函数可以被看作是在数学上的一个“点质量”或者一个无限窄的脉冲。 在Python中,没有内置的狄拉克函数,但我们可以使用一些库来模拟或者近似它,比如SciPy库。在信号处理或者系统分析中,狄拉克函数通常用来表示一个理想的脉冲响应。在数值模拟中,我们可以使用一个非常窄且高度集中的高斯函数来近似狄拉克函数。 下面是一个简单的例子,展示如何使用Python来近似狄拉克函数: ```python import numpy as np import matplotlib.pyplot as plt # 定义狄拉克函数的近似,使用高斯函数 def dirac_delta_approximation(x, mu=0.0, sigma=0.1): return np.exp(-((x - mu)**2) / (2 * sigma**2)) / (sigma * np.sqrt(2 * np.pi)) # 在原点附近取一些点 x_values = np.linspace(-1, 1, num=1000) # 计算高斯函数的值来近似狄拉克函数 y_values = dirac_delta_approximation(x_values) # 绘制图形 plt.plot(x_values, y_values, label='Dirac Delta Approximation') plt.xlabel('x') plt.ylabel('Amplitude') plt.title('Approximation of Dirac Delta Function') plt.legend() plt.grid(True) plt.show() ``` 请注意,这个近似随着sigma的减小会越来越接近狄拉克函数的真实形状,但需要注意的是,数学上的狄拉克函数并不是一个真正的函数,而是一个分布,它在物理和数学理论中具有特殊的含义和作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值