求和(i^k)表达式来了

S_{k}=\sum_{i=1}^{n} i^{k}=\frac{1}{k+1}[\sum_{i=1}^{k+1}(C_{k+1}^{i}n^{i})-\sum_{i=0}^{k-1}(C_{k+1}^{i}S_{i})]

S_{0}=n(p=n(n+1),q=n+\frac{1}{2})

S_{1}=\frac{1}{2}n(n+1)=\frac{1}{2}p

S_{2}=\frac{1}{3}n(n+1)(n+\frac{1}{2})=\frac{1}{3}pq

 S_{3}=\frac{1}{4}n(n+1)n(n+1)=\frac{1}{4}pp

S_{4}=\frac{1}{5}n(n+1)(n+\frac{1}{2})[n(n+1)-\frac{1}{3}]=\frac{1}{5}pq(p-\frac{1}{3})

S_{5}=\frac{1}{6}n(n+1)n(n+1)[n(n+1)-\frac{1}{2}]=\frac{1}{6}pp(p-\frac{1}{2})

S_{6}=\frac{1}{7}n(n+1)(n+\frac{1}{2})\left \{n(n+1)[n(n+1)-1]+\frac{1}{3}\right \}=\frac{1}{7}pq(p(p-1)+\frac{1}{3})

S_{7}=\frac{1}{8}pp(p^{2}-\frac{4}{3}p+\frac{2}{3})

S^{8}=\frac{1}{9}pq(p^{3}-2p^{2}+\frac{9}{5}p-\frac{3}{5})

S_{9}=\frac{1}{10}pp(p^{3}-\frac{5}{2}p^{2}+3p-\frac{3}{2})

S_{10}=\frac{1}{11}pq(p^{4}-\frac{10}{3}p^{3}+\frac{17}{3}p^{2}-5p+\frac{5}{3})

S_{25}=\frac{1}{26}pp(p^{11}-\frac{143}{6}p^{10}+\frac{1079}{3}p^{9}-\frac{8437}{2}p^{8}+\frac{119405}{3}p^{7}-\frac{897676}{3}p^{6}+\frac{12228332}{7}p^{5}-7629346p^{4}+23651185p^{3}-\frac{673689375}{14}p^{2}+\frac{1181820455}{21}p-\frac{1181820455}{42})

若有再进一步的规律就交给大家去总结了。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值