P3379 【模板】最近公共祖先(LCA)

传送门

在这里插入图片描述
在这里插入图片描述
思路:

  • 所谓LCA即两点的最近公共祖先,暴力的思维当然是一步一步往上爬寻找相交的第一个祖先,但这么暴力显然会超时。
  • 这个时候就可考虑以2的倍数来加速向上爬,且是从……32,16,8,4,2,1这样从大往小的选择跳跃步数(这样方便对大数悔棋)。
  • 大概操作即先爬最深的点x,让x与y位于同一深度时再开始一起往上爬。首先要记录各个点的深度和他们 2^i 级的的祖先,用数组d表示每个节点的深度,用 fa[i][j] 表示节点 i 的 2^j 级祖先。
  • 具体思路操作参考大佬博客,真的超详细,超nice!

代码实现:

#include<bits/stdc++.h>
#define endl '\n'
#define null NULL
#define ll long long
#define int long long
#define pii pair<int, int>
#define lowbit(x) (x &(-x))
#define ls(x) x<<1
#define rs(x) (x<<1+1)
#define me(ar) memset(ar, 0, sizeof ar)
#define mem(ar,num) memset(ar, num, sizeof ar)
#define rp(i, n) for(int i = 0, i < n; i ++)
#define rep(i, a, n) for(int i = a; i <= n; i ++)
#define pre(i, n, a) for(int i = n; i >= a; i --)
#define IOS ios::sync_with_stdio(0); cin.tie(0);cout.tie(0);
const int way[4][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
using namespace std;
const int  inf = 0x7fffffff;
const double PI = acos(-1.0);
const double eps = 1e-6;
const ll   mod = 1e9 + 7;
const int  N = 5e5 + 5;

inline void read(long long &x){
    char t=getchar();
    while(!isdigit(t)) t=getchar();
    for(x=t^48,t=getchar();isdigit(t);t=getchar()) x=x*10+(t^48);
}

int n, m, s;
int d[N], fa[N][22], lg[N];

int h[N], tt;
struct node{
    int to, ne;
}g[N << 1];

void add(int x, int y){
    g[++ tt].to = y;
    g[tt].ne = h[x];
    h[x] = tt;
}

void dfs(int now, int fath){
    fa[now][0] = fath;
    d[now] = d[fath] + 1;
    for(int i = 1; i <= lg[d[now]]; i ++)
        fa[now][i] = fa[fa[now][i-1]][i-1];
    for(int i = h[now]; i; i = g[i].ne)
        if(g[i].to != fath) dfs(g[i].to, now);
}

int LCA(int x, int y){
    if(d[x] < d[y]) swap(x, y);
    while(d[x] != d[y]) x = fa[x][lg[d[x]-d[y]] - 1];
    if(x == y) return x;
    for(int i = lg[d[x]]-1; ~i; i --)
        if(fa[x][i] != fa[y][i]) x = fa[x][i], y = fa[y][i];
    return fa[x][0];
}

signed main()
{
    read(n); read(m); read(s);
    for(int i = 1; i < n; i ++){
        int u, v; read(u); read(v);
        add(u, v); add(v, u);
    }
    for(int i = 1; i <= n; i ++)
        lg[i] = lg[i-1] + (1<<lg[i-1] == i);
    dfs(s, 0);
    while(m --){
        int u, v; read(u); read(v);
        printf("%d\n", LCA(u, v));
    }

    return 0;
}

©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页