Teacher:Erik Demaine
θ & O & Ω
θ theta
Ω Omega
Ω(下界/min) <= θ <= O (上界/max)
特别提到在推导过程中,Ω、θ、O等符号不可以传递,比如a = θ(n);
θ(n) = c;但是不能说a等于c;而且这里的=是属于的意思。a属于 θ(n)代表的集合。
case 1 substitution method 代换法
待补充
case 2 recurences tree 递归树法
视频中截个图(方便),这里的展开在上节课也有用到。个人理解这个展开是逻辑上的展开,也就是递归的一种表现形式。比如第二层n/4代表是每个合并项是n/4个元素,n/2代表n/2个元素,当然这里是课上举的例子所以可以看到同一层级递归速度不一样,现实编程中每层级的递归速度往往是一致的。如果把每层的递归速度变为一致,其实更能方便理解。

就像课上的例子,如果T(n) = T(n/4)+t(n/2)+n2n^2n2那么就可以画一个上面所示的递归树方便解答。
个人对这里的递归树的展开有些疑惑,不敢保证理解的一定是对的。
case 3 master theorem 主定理
T(n)=nlogab−ξT(n) = n^{\log_a^{b}-\xi}T(n)=nlogab−ξ

博客围绕算法复杂度分析展开,介绍了θ、O、Ω符号及其关系,强调推导中符号不可传递,‘=’表示属于。还提及三种分析方法,代换法待补充,递归树法是递归的逻辑展开形式,主定理给出了T(n)的表达式。
6398

被折叠的 条评论
为什么被折叠?



