Introduction to Algorithms SndLession Math

博客围绕算法复杂度分析展开,介绍了θ、O、Ω符号及其关系,强调推导中符号不可传递,‘=’表示属于。还提及三种分析方法,代换法待补充,递归树法是递归的逻辑展开形式,主定理给出了T(n)的表达式。

Teacher:Erik Demaine

θ & O & Ω

θ theta
Ω Omega

Ω(下界/min) <= θ <= O (上界/max)
特别提到在推导过程中,Ω、θ、O等符号不可以传递,比如a = θ(n);
θ(n) = c;但是不能说a等于c;而且这里的=是属于的意思。a属于 θ(n)代表的集合。

case 1 substitution method 代换法

待补充

case 2 recurences tree 递归树法

视频中截个图(方便),这里的展开在上节课也有用到。个人理解这个展开是逻辑上的展开,也就是递归的一种表现形式。比如第二层n/4代表是每个合并项是n/4个元素,n/2代表n/2个元素,当然这里是课上举的例子所以可以看到同一层级递归速度不一样,现实编程中每层级的递归速度往往是一致的。如果把每层的递归速度变为一致,其实更能方便理解。
在这里插入图片描述
就像课上的例子,如果T(n) = T(n/4)+t(n/2)+n2n^2n2那么就可以画一个上面所示的递归树方便解答。
个人对这里的递归树的展开有些疑惑,不敢保证理解的一定是对的。

case 3 master theorem 主定理

T(n)=nlog⁡ab−ξT(n) = n^{\log_a^{b}-\xi}T(n)=nlogabξ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值