This is bill的专属博客

仅作研究用途,侵删

[work]TypeError: 'Tensor' object does not support item assignment in TensorFlow

I try to run this code:

outputs, states = rnn.rnn(lstm_cell, x, initial_state=initial_state, sequence_length=real_length)

tensor_shape = outputs.get_shape()
for step_index in range(tensor_shape[0]):
    word_index = self.x[:, step_index]
    word_index = tf.reshape(word_index, [-1,1])
    index_weight = tf.gather(word_weight, word_index)
    outputs[step_index,  :,  :]=tf.mul(outputs[step_index,  :,  :] , index_weight)

But I get error on last line: TypeError: 'Tensor' object does not support item assignment It seems I can not assign to tensor, how can I fix it?


In general, a TensorFlow tensor object is not assignable*, so you cannot use it on the left-hand side of an assignment.

The easiest way to do what you're trying to do is to build a Python list of tensors, and tf.stack()them together at the end of the loop:

outputs, states = rnn.rnn(lstm_cell, x, initial_state=initial_state,
                          sequence_length=real_length)

output_list = []

tensor_shape = outputs.get_shape()
for step_index in range(tensor_shape[0]):
    word_index = self.x[:, step_index]
    word_index = tf.reshape(word_index, [-1,1])
    index_weight = tf.gather(word_weight, word_index)
    output_list.append(tf.mul(outputs[step_index, :, :] , index_weight))

outputs = tf.stack(output_list)

 * With the exception of tf.Variable objects, using the Variable.assign() etc. methods. However, rnn.rnn() likely returns a tf.Tensor object that does not support this method.


阅读更多
个人分类: 机器学习
上一篇[work]Cannot convert a partially converted tensor in TensorFlow
下一篇[work]Swap tensor axes in tensorflow
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭