# 机器学习-回归算法

## 四，代码

# -*- coding: utf-8 -*-
import os
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

num_points = 100

Sample_X = []
Sample_y = []

for i in range(num_points):
# np.random.normal(mean,divation)
x1 = np.random.normal(0.0, 0.55)
x2 = np.random.normal(0.0, 0.56)
y1 = x1 * 0.1 + x2 * 0.2 + 0.3 + np.random.normal(0.0, 0.03)
Sample_X.append([x1, x2])
Sample_y.append([y1])

x_data = Sample_X
y_data = Sample_y

W = tf.Variable(tf.random_uniform([2, 1], -1, 1, dtype=tf.float32), name="weight")
b = tf.Variable(tf.zeros([1, 1]), name="b", dtype=tf.float32)

x_ = tf.placeholder(tf.float32, [100, 2], name="x-input")
y_ = tf.placeholder(tf.float32, [100, 1], name="y-input")

loss = tf.reduce_mean(tf.square(y-y_), name="loss")

init = tf.global_variables_initializer()
count = 0
with tf.Session() as sess:
sess.run(init)
for times in range(100000):
_ = sess.run([train], feed_dict={x_:x_data, y_:y_data})
loss_ = sess.run([loss], feed_dict={x_:x_data, y_:y_data})
if count % 100 == 0:
print(sess.run(W), sess.run(b))
count = count + 1



• 广告
• 抄袭
• 版权
• 政治
• 色情
• 无意义
• 其他

120