个人觉得这个博客把这个算法说的比较详细了,直接搬过来吧,我再阐述一遍的话没有人家说的好,还容易说错。
========================== 分割线之下摘自Sasuke_SCUT的blog==================================================
最 小树形图,就是给有向带权图中指定一个特殊的点root,求一棵以root为根的有向生成树T,并且T中所有边的总权值最小。最小树形图的第一个算法是 1965年朱永津和刘振宏提出的复杂度为O(VE)的算法。
判断是否存在树形图的方法很简单,只需要以v为根作一次图的遍历就可以了,所以下面的 算法中不再考虑树形图不存在的情况。
在所有操作开始之前,我们需要把图中所有的自环全都清除。很明显,自环是不可能在任何一个树形图上的。只有进 行了这步操作,总算法复杂度才真正能保证是O(VE)。
首先为除根之外的每个点选定一条入边,这条入边一定要是所有入边中最小的。现在所有的最小 入边都选择出来了,如果这个入边集不存在有向环的话,我们可以证明这个集合就是该图的最小树形图。这个证明并不是很难。如果存在有向环的话,我们就要将这 个有向环所称一个人工顶点,同时改变图中边的权。假设某点u在该环上,并设这个环中指向u的边权是in[u],那么对于每条从u出发的边(u, i, w),在新图中连接(new, i, w)的边,其中new为新加的人工顶点; 对于每条进入u的边(i, u, w),在新图中建立边(i, new, w-in[u])的边。为什么入边的权要减去in[u],这个后面会解释,在这里先给出算法的步骤。然后可以证明,新图中最小树形图的权加上旧图中被收缩 的那个环的权和,就是原图中最小树形图的权。
上面结论也不做证明了。现在依据上面的结论,说明一下为什么出边的权不变,入边的权要减去in [u]。对于新图中的最小树形图T,设指向人工节点的边为e。将人工节点展开以后,e指向了一个环。假设原先e是指向u的,这个时候我们将环上指向u的边 in[u]删除,这样就得到了原图中的一个树形图。我们会发现,如果新图中e的权w'(e)是原图中e的权w(e)减去in[u]权的话,那么在我们删除 掉in[u],并且将e恢复为原图状态的时候,这个树形图的权仍然是新图树形图的权加环的权,而这个权值正是最小树形图的权值。所以在展开节点之后,我们 得到的仍然是最小树形图。逐步展开所有的人工节点,就会得到初始图的最小树形图了。
如果实现得很聪明的话,可以达到找最小入边O(E),找环 O(V),收缩O(E),其中在找环O(V)这里需要一点技巧。这样每次收缩的复杂度是O(E),然后最多会收缩几次呢?由于我们一开始已经拿掉了所有的 自环,我门可以知道每个环至少包含2个点,收缩成1个点之后,总点数减少了至少1。当整个图收缩到只有1个点的时候,最小树形图就不不用求了。所以我们最 多只会进行V-1次的收缩,所以总得复杂度自然是O(VE)了。由此可见,如果一开始不除去自环的话,理论复杂度会和自环的数目有关。
======================== 分割线之上摘自Sasuke_SCUT的blog=====================================================
下 面是朱刘算法的构造图
- #include <cstdio>
- #include <iostream>
- #include<queue>
- #include<set>
- #include<ctime>
- #include<algorithm>
- #include<cmath>
- #include<vector>
- #include<map>
- #include<cstring>
- using namespace std;
- const double eps=1e-10;
- #define M 109
- #define type double
- const type inf=(1)<<30;
- struct point
- {
- double x,y;
- }p[M];
- double dis(point a,point b)
- {
- return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
- }
- struct Node{
- int u , v;
- type cost;
- }E[M*M+5];
- int pre[M],ID[M],vis[M];
- type In[M];
- int n,m;
- type Directed_MST(int root,int NV,int NE) {
- type ret = 0;
- while(true) {
- //1.找最小入边
- for(int i=0;i<NV;i++) In[i] = inf;
- for(int i=0;i<NE;i++){
- int u = E[i].u;
- int v = E[i].v;
- if(E[i].cost < In[v] && u != v) {
- pre[v] = u;
- In[v] = E[i].cost;
- }
- }
- for(int i=0;i<NV;i++) {
- if(i == root) continue;
- if(In[i] == inf) return -1;//除了跟以外有点没有入边,则根无法到达它
- }
- //2.找环
- int cntnode = 0;
- // CC(ID,-1);
- // CC(vis,-1);
- memset(ID,-1,sizeof(ID));
- memset(vis,-1,sizeof(vis));
- In[root] = 0;
- for(int i=0;i<NV;i++) {//标记每个环
- ret += In[i];
- int v = i;
- while(vis[v] != i && ID[v] == -1 && v != root) {
- vis[v] = i;
- v = pre[v];
- }
- if(v != root && ID[v] == -1) {
- for(int u = pre[v] ; u != v ; u = pre[u]) {
- ID[u] = cntnode;
- }
- ID[v] = cntnode ++;
- }
- }
- if(cntnode == 0) break;//无环
- for(int i=0;i<NV;i++) if(ID[i] == -1) {
- ID[i] = cntnode ++;
- }
- //3.缩点,重新标记
- for(int i=0;i<NE;i++) {
- int v = E[i].v;
- E[i].u = ID[E[i].u];
- E[i].v = ID[E[i].v];
- if(E[i].u != E[i].v) {
- E[i].cost -= In[v];
- }
- }
- NV = cntnode;
- root = ID[root];
- }
- return ret;
- }
- int main()
- {
- while(scanf("%d%d",&n,&m)!=EOF)
- {
- // memset(pre,0,sizeof(pre));
- for(int i=0;i<n;i++)
- scanf("%lf%lf",&p[i].x,&p[i].y);
- for(int i=0;i<m;i++)
- {
- scanf("%d%d",&E[i].u,&E[i].v);
- E[i].u--;
- E[i].v--;
- if(E[i].u!=E[i].v)
- E[i].cost=dis(p[E[i].u],p[E[i].v]);
- else E[i].cost=1<<30;
- }
- type ans=Directed_MST(0,n,m);
- if(ans==-1)
- printf("poor snoopy\n");
- else
- printf("%.2f\n",ans);
- }
- return 0;
- }
- #include <cstdio>
- #include <iostream>
- #include<queue>
- #include<set>
- #include<ctime>
- #include<algorithm>
- #include<cmath>
- #include<vector>
- #include<map>
- #include<cstring>
- using namespace std;
- const double eps=1e-10;
- #define M 109
- #define type int
- const type inf=(1)<<30;
- struct point
- {
- double x,y;
- }p[M];
- double dis(point a,point b)
- {
- return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
- }
- struct Node{
- int u , v;
- type cost;
- }E[M*M+5];
- int pre[M],ID[M],vis[M];
- type In[M];
- int n,m;
- type Directed_MST(int root,int NV,int NE) {
- type ret = 0;
- while(true) {
- //1.找最小入边
- for(int i=0;i<NV;i++) In[i] = inf;
- for(int i=0;i<NE;i++){
- int u = E[i].u;
- int v = E[i].v;
- if(E[i].cost < In[v] && u != v) {
- pre[v] = u;
- In[v] = E[i].cost;
- }
- }
- for(int i=0;i<NV;i++) {
- if(i == root) continue;
- if(In[i] == inf) return -1;//除了跟以外有点没有入边,则根无法到达它
- }
- //2.找环
- int cntnode = 0;
- memset(ID,-1,sizeof(ID));
- memset(vis,-1,sizeof(vis));
- In[root] = 0;
- for(int i=0;i<NV;i++) {//标记每个环
- ret += In[i];
- int v = i;
- while(vis[v] != i && ID[v] == -1 && v != root) {
- vis[v] = i;
- v = pre[v];
- }
- if(v != root && ID[v] == -1) {
- for(int u = pre[v] ; u != v ; u = pre[u]) {
- ID[u] = cntnode;
- }
- ID[v] = cntnode ++;
- }
- }
- if(cntnode == 0) break;//无环
- for(int i=0;i<NV;i++) if(ID[i] == -1) {
- ID[i] = cntnode ++;
- }
- //3.缩点,重新标记
- for(int i=0;i<NE;i++) {
- int v = E[i].v;
- E[i].u = ID[E[i].u];
- E[i].v = ID[E[i].v];
- if(E[i].u != E[i].v) {
- E[i].cost -= In[v];
- }
- }
- NV = cntnode;
- root = ID[root];
- }
- return ret;
- }
- int main()
- {
- while(scanf("%d%d",&n,&m),n+m)
- {
- for(int i=0;i<m;i++)
- {
- scanf("%d%d%d",&E[i].u,&E[i].v,&E[i].cost);
- E[i].u--;
- E[i].v--;
- }
- type ans=Directed_MST(0,n,m);
- if(ans==-1)
- printf("impossible\n");
- else
- printf("%d\n",ans);
- }
- return 0;
- }