/* 其实,tarjan算法的基础是DFS。我们准备两个数组Low和Dfn。Low数组是一个标记数组,记录该点所在的强连通子图所在搜索子树的根节点的Dfn值
(很绕嘴,往下看你就会明白),Dfn数组记录搜索到该点的时间,也就是第几个搜索这个点的。
根据以下几条规则,经过搜索遍历该图(无需回溯)和对栈的操作,我们就可以得到该有向图的强连通分量。
数组的初始化:当首次搜索到点p时,Dfn与Low数组的值都为到该点的时间。
堆栈:每搜索到一个点,将它压入栈顶。
当点p有与点p’相连时,如果此时(时间为dfn[p]时)p’不在栈中,p的low值为两点的low值中较小的一个。
当点p有与点p’相连时,如果此时(时间为dfn[p]时)p’在栈中,p的low值为p的low值和p’的dfn值中较小的一个。
每当搜索到一个点经过以上操作后(也就是子树已经全部遍历)的low值等于dfn值,则将它以及在它之上的元素
弹出栈。这些出栈的元素组成一个强连通分量。
继续搜索(或许会更换搜索的起点,因为整个有向图可能分为两个不连通的部分),直到所有点被遍历。
由于每个顶点只访问过一次,每条边也只访问过一次,我们就可以在O(n+m)的时间内求出有向图的
强连通分量。但是,这么做的原因是什么呢?
Tarjan算法的操作原理如下:
Tarjan算法基于定理:在任何深度优先搜索中,同一强连通分量内的所有顶点均在同一棵深度优先搜索树中。
也就是说,强连通分量一定是有向图的某个深搜树子树。
可以证明,当一个点既是强连通子图Ⅰ中的点,又是强连通子图Ⅱ中的点,则它是强连通子图Ⅰ∪Ⅱ中的点。
这样,我们用low值记录该点所在强连通子图对应的搜索子树的根节点的Dfn值。注意,该子树中的元素在栈中
一定是相邻的,且根节点在栈中一定位于所有子树元素的最下方。
强连通分量是由若干个环组成的。所以,当有环形成时(也就是搜索的下一个点已在栈中),
我们将这一条路径的low值统一,即这条路径上的点属于同一个强连通分量。
如果遍历完整个搜索树后某个点的dfn值等于low值,则它是该搜索子树的根。这时,它以上(包括它自己)
一直到栈顶的所有元素组成一个强连通分量。*/
(很绕嘴,往下看你就会明白),Dfn数组记录搜索到该点的时间,也就是第几个搜索这个点的。
根据以下几条规则,经过搜索遍历该图(无需回溯)和对栈的操作,我们就可以得到该有向图的强连通分量。
数组的初始化:当首次搜索到点p时,Dfn与Low数组的值都为到该点的时间。
堆栈:每搜索到一个点,将它压入栈顶。
当点p有与点p’相连时,如果此时(时间为dfn[p]时)p’不在栈中,p的low值为两点的low值中较小的一个。
当点p有与点p’相连时,如果此时(时间为dfn[p]时)p’在栈中,p的low值为p的low值和p’的dfn值中较小的一个。
每当搜索到一个点经过以上操作后(也就是子树已经全部遍历)的low值等于dfn值,则将它以及在它之上的元素
弹出栈。这些出栈的元素组成一个强连通分量。
继续搜索(或许会更换搜索的起点,因为整个有向图可能分为两个不连通的部分),直到所有点被遍历。
由于每个顶点只访问过一次,每条边也只访问过一次,我们就可以在O(n+m)的时间内求出有向图的
强连通分量。但是,这么做的原因是什么呢?
Tarjan算法的操作原理如下:
Tarjan算法基于定理:在任何深度优先搜索中,同一强连通分量内的所有顶点均在同一棵深度优先搜索树中。
也就是说,强连通分量一定是有向图的某个深搜树子树。
可以证明,当一个点既是强连通子图Ⅰ中的点,又是强连通子图Ⅱ中的点,则它是强连通子图Ⅰ∪Ⅱ中的点。
这样,我们用low值记录该点所在强连通子图对应的搜索子树的根节点的Dfn值。注意,该子树中的元素在栈中
一定是相邻的,且根节点在栈中一定位于所有子树元素的最下方。
强连通分量是由若干个环组成的。所以,当有环形成时(也就是搜索的下一个点已在栈中),
我们将这一条路径的low值统一,即这条路径上的点属于同一个强连通分量。
如果遍历完整个搜索树后某个点的dfn值等于low值,则它是该搜索子树的根。这时,它以上(包括它自己)
一直到栈顶的所有元素组成一个强连通分量。*/
tarjan(u)
{
DFN[u]=Low[u]=++Index // 为节点u设定次序编号和Low初值
Stack.push(u) // 将节点u压入栈中
for each (u, v) in E // 枚举每一条边
if (v is not visted) // 如果节点v未被访问过
tarjan(v) // 继续向下找
Low[u] = min(Low[u], Low[v])
else if (v in S) // 如果节点v还在栈内
Low[u] = min(Low[u], DFN[v])
if (DFN[u] == Low[u]) // 如果节点u是强连通分量的根
repeat
v = S.pop // 将v退栈,为该强连通分量中一个顶点
print v
until (u== v)
}
//求有向图的强联通分量的tarjan算法
void tarjan(int i)//原理不清晰
{
int j;
DFN[i]=LOW[i]=++Dindex;//初值为其本身序号
instack[i]=true;//进栈
Stap[++Stop]=i;
for (edge *e=V[i];e;e=e->next)
{
j=e->t;//搜索相邻的边
if (!DFN[j])//未搜过就再搜
{
tarjan(j);
if (LOW[j]<LOW[i])//low为搜索到的时间值
LOW[i]=LOW[j];//更新为其上一层节点的时间值
}
else if (instack[j] && DFN[j]<LOW[i])
LOW[i]=DFN[j];//已经搜过了则为j的根节点的时间值
}
if (DFN[i]==LOW[i])//这是找到一个连通分量的意思吧
{
Bcnt++;
do
{
j=Stap[Stop--];
instack[j]=false;
Belong[j]=Bcnt;
}
while (j!=i);
}//在栈中的值都统一
}
void solve()
{
int i;
Stop=Bcnt=Dindex=0;
memset(DFN,0,sizeof(DFN));
for (i=1;i<=N;i++)
if (!DFN[i])//bcnt就是连通分量数吧
tarjan(i);
}