题目描述
给你一个 m * n 的矩阵,矩阵中的元素不是 0 就是 1,请你统计并返回其中完全由 1 组成的 正方形 子矩阵的个数。
样例描述
示例 1:
输入:matrix =
[
[0,1,1,1],
[1,1,1,1],
[0,1,1,1]
]
输出:15
解释:
边长为 1 的正方形有 10 个。
边长为 2 的正方形有 4 个。
边长为 3 的正方形有 1 个。
正方形的总数 = 10 + 4 + 1 = 15.
思路
- 动态规划。本题的状态转化方程与下面这题一样,可以参考具体思路
Leetcode–Java–221. 最大正方形 唯一区别就是状态表示含义不同,上题中表示的是最大边长,这题表示的是边长为f[i][j] = x的正方形,将所有边长为x(1,2,3…)的正方形累加起来就是总和。
代码
Java版:
class Solution {
public int countSquares(int[][] matrix) {
int m = matrix.length, n = matrix[0].length;
if (matrix == null || m == 0 || n == 0) {
return 0;
}
int f[][] = new int[m][n];
int ans = 0;
for (int i = 0; i < m; i ++ ) {
for (int j = 0; j < n; j ++ ) {
//边界情况 直接赋值
if (i == 0 || j == 0) {
f[i][j] = matrix[i][j];
}
//非边界
else {
//如果是0,直接赋值为0
if (matrix[i][j] == 0) {
f[i][j] = 0;
}else {
f[i][j] = Math.min(Math.min(f[i - 1][j], f[i][j - 1]), f[i - 1][j - 1]) + 1;
}
}
//所有边长为f[i][j]的正方形加起来 为0的话,等于没加不影响
ans += f[i][j];
}
}
return ans;
}
}
Python版:
class Solution:
def countSquares(self, matrix: List[List[int]]) -> int:
m, n = len(matrix), len(matrix[0])
ans = 0
if m == 0 or n == 0 or matrix == None:
return ans
dp = [[0] * n for _ in range(m)]
for i in range(m):
for j in range(n):
if i == 0 or j == 0:
dp[i][j] = matrix[i][j]
elif matrix[i][j] == 0:
dp[i][j] = 0
else:
dp[i][j] = min(dp[i - 1][j], dp[i - 1][j - 1], dp[i][j - 1]) + 1
ans += dp[i][j]
return ans
这篇博客主要讲解如何使用动态规划解决LeetCode中的一个问题,即统计一个m*n矩阵中全为1的正方形子矩阵的数量。作者通过样例解释了问题,并给出了Java和Python两种语言的解决方案。

被折叠的 条评论
为什么被折叠?



