大模型调优技术:Parameter-efficient transfer learning
提示微调(Prompt Tuning)通过在输入点或中间层前置一组可学习的提示 tokens,并在微调过程中只优化这些 tokens 的参数,从而实现参数高效的微调方法。在微调过程中,只更新这些适配器模块的参数,而 BERT 模型的参数保持不变。在微调过程中,只更新这些低秩矩阵的参数,而原始权重矩阵保持不变。更新适配器参数:只更新适配器模块的参数,使模型能够适应特定的下游任务。插入适配器模块:在预训练模型的每一层之间插入适配器模块。冻结原模型参数:在微调过程中,预训练模型的参数保持不变。















