「Paper Reading」Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection

本文对比了Correlation、Eigenfaces、Linear Subspaces和Fisherfaces算法在人脸识别中的应用。Fisherface方法对光照变化和表情变化不敏感,其核心思想是寻找类间差异最大化、类内差异最小化的投影。通过调整scatter matrix,Fisherfaces能更好地捕获不同类别间的脸部特征,从而提高识别准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文解决的是Face Recognition问题,作者所提出的Fisherface方法可以对光照变化(光照强度,光源数量以及方向的变化)以及面部表情变化不敏感。并且比较了四种方法: Correlation, Eigenfaces,Linear Subspaces, Fisherfaces算法描述以及各自的优势劣势。


问题描述:我们有一组带标记的face images,即learning set训练集;还有一组无标记的需要识别的face images,即测试集;测试集所有的人脸类别都来自训练集。我们需要设计算法,来判断出测试集图片都属于哪个类别。我们假设这些face images都已经被对齐。


新方法Fisherface的核心思想:1. 假设面部是Lambertian surface,特定的面部在不同的光照但固定视角下的图像,都落在高维图片空间的三维线性子平面内;2. 由于阴影、反射光以及表情的变化,上述1的描述可能不成立,即这些影响因素导致face images部分区域不在三维线性子平面内。


首先,我们来看看Correlation方法。Correlation是nearest neighbors algorithm中最简单的一种策略。首先对所有图片进行normali

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值